Effects of deleting mitochondrial antioxidant genes on life span.

Authors: Unlu ES; Koc A
Year: 2007
Journal: Annals of the New York Academy of Sciences
Abstract: Reactive oxygen species (ROS) damage biomolecules, accelerate aging, and shorten life span, whereas antioxidant enzymes mitigate these effects. Because mitochondria are a primary site of ROS generation and also a primary target of ROS attack, they have become a major focus area of aging studies. Here, we employed yeast genetics to identify mitochondrial antioxidant genes that are important for replicative life span. In our studies, it was found that among the known mitochondrial antioxidant genes (TTR1, CCD1, SOD1, GLO4, TRR2, TRX3, CCS1, SOD2, GRX5, PRX1), deletion of only three genes, SOD1 (Cu, Zn superoxide dismutase), SOD2 (Manganese-containing superoxide dismutase), and CCS1 (Copper chaperone), shortened the life span enormously. The life span decreased 40% for Deltasod1 mutant, 72% for Deltasod2 mutant, and 50% for Deltaccs1 mutant. Deletion of the other genes had little or no effect on life span.
Reference

Integration:

Created on Nov. 5, 2012, 4:44 p.m.
Not linked
Integrated: False

No notes
Species: Budding yeast

Experiments: 0
Interventions:
Edit study (Admin) | Add experiment to study (Admin) | Delete study

Comment on This Data Unit