Factors

We need to know every factor which determines lifespan.

Lifespan factors often but not always originate from defined genetic elements. They are not just genes, by definition they can be anything for which a Classifications schema can be build for that is related to the regulation of lifespan, such entities may include Single-Nucleotide Polymorphism, transcript variants, proteins and their complexes, compounds (i.e. small molecules like metabolites and drugs), etc. A factor should be based on a defined molecular entity or genomic position and been classified. It shall be highly flexible and scalable Concept.

While individual lifespan factors within each species or precise defined molecular entities will be captured within the Lifespan App, Data Entries of the Data App may summarize for instance the relevance of each factor class (e.g. homologous group; chemical derivate of related structure and properties, etc.) as well as draw overall conclusions. o

prometheus--2.jpg

  • symbol name observation species
    HAP4 Heme Activator Protein 4 Overexpression of HAP4 from the ADH1 promoter extends lifespan of PSY316 strain approximately 40% under growth conditions favoring fermentation (2% glucose). Overexpression of HAP4 increases replicative lifespan, but is non-additive with 0.5% glucose restriction in lifespan extension. Lifespan extension by HAP4 overexpression requires SIR2 [12124627]. HAP4 deletion suppresses replicative lifespan extension to 30% and 33% on 0.1% glucose and on elimination of non-essential amino acids, respectively [20178842]. HAP4 overexpressing cells demonstrate a transcriptional response resembling cells undergoing diauxic shift, consume more oxygen, and exhibit increased Sir2-dependent transcriptional silencing at telomeres and rDNA [12124627]. Budding yeast
    GUT2 Glycerol UTilization 2 Overexpression of GUT2 extends replicative lifespan by 25% and does not synergize with 0.5% glucose restriction [18381895]. Budding yeast
    AAT1 Aspartate AminoTransferase 1 Overexpression of AAT1 extends replicative lifespan by 25% and does not synergize with 0.5% glucose restriction [18381895]. Budding yeast
    wwp-1 WW domain Protein (E3 ubiquitin ligase) 1 RNA interference of wwp-1 decreases median lifespan by 9% in wild-type animals and 24% in daf-2 mutants [18006689]. Loss of wwp-1 function by RNAi or mutation reduces lifespan at 25 degree Celsius, but not 20 degree Celsius. wwp-1 overexpression extends lifespan by up to 20%. Reduced levels of wwp-1 completely suppress the extended longevity of eat-2 mutants. Lifespan of wwp-1 mutants across entire food concentration range by bacterial dilution in liquid culture or on solid plates does not noticeable change. There is no difference in wwp-1 mRNA levels under AL and DR. RNAi reduction of pha-4, but not of daf-16 suppresses increased longevity by wwp-1 overexpression. Mutations in iron sulphur component of complex III, isp-1, increases longevity by reducing mitochondrial function. wwp-1 RNAi does not suppress the extended lifespan of isp-1 mutants and has only minor suppressive effects on lifespan of another mitochondrial mutant, clk-1, and in cyc-1 RNAi treated worms. RNAi depletion of wwp-1 has no effect on long lifespan of daf-2 mutants [19553937]. Nematode
    skn-1 SKiNhead 1 RNA interference of or mutations in skn-1 prevent the life-extension effects of dietary restriction [17538612]. skn-1 transgenes that overexpress a constitutive nuclear form of SKN-1 in the intestine extend the mean lifespan by 5-21%, independently of DAF-16 [18358814]. skn-1 mutation does not alter lifespan under AL, but cancels out the lifespan extension effect of lDR or food variation at all. Response to lDR in skn-1 mutant is restored by ectopic expression of skn-1 in ASI neurons and gut. Ectopic expression of skn-1b in ASI neurons rescued lDR longevity defects of skn-1. Ablation of ASI neurons completely suppresses the response to DR in wild-type or daf-16 mutants and cause a small increase in basal longevity of wild-type but not daf-16 mutants. lDR significantly increases SKN-1 expression in ASI neurons. lDR worms exhibit elevated respiration, which is absent in skn-1 mutants. skn-1 is necessary for increased respiration and the increase in respiration is necessary for lDR longevity effect, because two different inhibitors of mitochondrial electron transport chain complex III, myxothiazol and antimycin, suppress lDR longevity without shortening lifespan under AL. In contrast, the long life of a daf-2 mutant is not affected by antimycin. Some isoforms of SKN-1 are expressed from an operon downstream of bec-1. Beclin-1 mediates autophagy induced by nutrient deprivation. Therefore, skn-1 might be regulated by nutritional stress [17538612]. IF significantly extends lifespan of skn-1 mutants [19079239]. sDR extends lifespan of a skn-1 loss-of-function mutant (which displays a premature stop codon in all three isoforms) and wild-type to a similar extent [19239417]. skn-1(zu67) mutation decreases mean, median, and maximum lifespan by 11-23, 13-28 and 12-23%, respectively, and totally cancels out lifespan extension by ragc-1 RNAi [22560223]. Nematode
    Sir2 Overexpression of Sir2 (alias dSir2) extends lifespan by up to 57% and specifically median lifespan by 40-60%, whereas a decrease in Sir2 activity by mutation blocks the life-extending effect of caloric reduction or rpd3 mutations [15520384]. rpd3 mutants fed normal food and wild-type fed a low-calorie diet increase dSir2 expression two-fold [12459580]. Sir2 mutation does not reduce lifespan under AL. Ubiquitous Sir2 overexpression causes a 4-fold increase in Sir2 mRNA expression and an up to 57% increase in average lifespan (29% for females and 18% for males). A 10 - 20% increase in Sir2 mRNA levels causes no lifespan extension. High levels of Sir2 protein is found in nuclei of neurons and in nuclei and cytoplasm of fat body cells. Neuronal Sir2 overexpression extends average lifespan by 52% in females and 20% in males. Motor-neuronal specific expression fails to cause lifespan extension. Flies with no or with several decreased Sir2 gene function have no lifespan extension under DR. DR fails to cause further increase in lifespan or even reduces lifespan toward normal of Sir2 overexpression mutants. Mild Sir2 overexpression in the fat-body extends lifespan and reduces relative body fat content in both males and females [22661237]. Sir2 in the adult fat body regulates longevity in a diet-depending manner. A diet-dependent lifespan phenotype of Sir2 perturbations (both knockdown and overexpression) in the fat-body, but not in muscles, negates the effects of background genetic mutants. Sir2 knockdown abrogates fat-body dFoxo-dependent lifespan extension [23246004]. Decreased expression of Sir2 and Sir2-like genes in all cells causes lethality during development. Suppression of the Sir2 in neurons decreases the median lifespan by 10-30%, while ubiquitinous silinecing of the Sir2-like genes shortens lifespan. The effects are server at 28°C that at 25°C [17159295]. Fruit fly
    sir-2.1 Yeast SIR related 1 sir-2.1 deletion slightly reduces lifespan of wild-type [16860373]. sir-2.1 overexpression extends lifespan by about 50% and this lifespan extension depends on DAF-16 activity as it is suppressed by mutation in daf-16 and it does not synergize with daf-2 [11242085]. sir-2.1 suppresses longevity of unc-13 and eat-2, but not daf-2 or unc-64 mutants. sir-2.1 is therefore partially required for lifespan extension from mutation of eat-2 [16860373], but is completely independent for lifespan extension from DR using a reduced feeding protocol [Kaeberlein et al. in press]. sDR increases lifespan of wild-type and sir-2.1 mutants to the same extent [19239417]. Overrexpression of sir-2.1 synergizes with TGF-beta mutation (daf-4 and daf-1) for dauer formation [11242085]. Nematode
    pha-4 defective PHArynx development 4 pha-4 is required for multiple forms of DR. RNAi of pha-4 completely cancels out the lifespan extension of eat-2 mutation. Mutants of pha-4 do not respond to bacterial DR. Therefore, loss of pha-4 completely blocks the response to varying food concentration. Moreover, pha-4 expression is increased in response to DR in wild-type. pha-4 overexpression increases longevity of wild-type only slightly, but significant that of daf-16 mutants. The response to DR involves the PHA-4-dependent expression of sod-1, sod-2 and sod-5. Reduction of pha-4 does not suppress the long lifespan of daf-2 mutants or animals with defective electron transport chain [17476212]. IF significantly extends lifespan of pha-4 [19079239]. sDR extends lifespan of mutants with a temperature sensitive allele of pha-4 or pha-4 RNAi knockdown, but not daf-16 RNAi [19239417]. PHA-4 may play a role in the life-extending effects of dietary restriction. RNAi of pha-4 decreases lifespan of wild-type worms, but not of daf-2 mutants or of animals with defective electron transport chains. Nematode
    hsf-1 Heat Shock Factor 1 RNA interference of hsf-1 suppresses normal dauer formation and life-extension due to insulin-like signaling [14668486]. hsf-1 overexpression extends mean, median, and maximum lifespan by 37, 35, and 29%[22737090]. hsf-1 RNAi abrogates lifespan extension by daf-2(e1370) mutation, but not eat-2(ad1116) or isp-1(qm150). HSF-1, like DAF-16, is required for daf-2 mutations to extend lifespan [12750521]. A mutant allele of hsf-1 slightly decreases lifespan under AL, but cancels out the lifespan extension effect of bDR. hsf-1 RNAi also prevents lifespan extension by bDR. bDR significantly reduces paralysis of Q35YFP or ABeta42 transgenic animals and hsf-1 RNAi totally cancels this effect. DR confers a general protective effect against proteotoxicity and promotes longevity by a mechanism involving hsf-1 [18331616]. Glucose or glycerol does not shorten the lifespan of hsf-1 mutants. Glucose treatment completely suppresses the long lifespan caused by hsf-1 overexpression [19883616]. sDR extends the lifespan of hsf-1 mutant with a premature stop codon, that eliminates activation domain, and that of wild-type to a similar extent [19239417]. hsf-1 RNAi attenuates lifespan extension by bDR, but only partially that of daf-2 mutation. hsf-1 RNAi attenuates protection against oxidative stress by bDR. hsf-1 expression is induced by bDR [19924292]. RNAi of hsf-1 shortens median and maximum lifespan by approximately 35%. hsf-1 RNAi animals exhibit phenotypes associated with accelerated aging (as assyed by Nomarsky microscopy) [12136014]. Nematode
    Ghr Growth hormone receptor Ghr knockouts (the so called Laron mice) are dwarfs with significantly extended lifespan by 40-50% [12933651]. Ghr-/- mice are significantly longer lived as Ghr+/+ or Ghr+/- mice (by 40-50%) in both females and males [10875265; 19370397]. 30% DR fails to affect overall survival, average or median long-lifespan of Growth hormone receptor knockout (GHRKO) mice and increased maximal lifespan only in females. Insulin sensitivity in GHRKO mutants is greater than in wild-type and is not further increased by DR [16682650]. Intermittent fasting also fails to extend the long lifespan of GHRKO mice [19747233]. Lifespan of mice with a deletion in the Ghr gene live almost 5 years [21123740]. In C57BL/6J this mutation increases life expectancy by 16 to 26% depending on gender [12933651] and in mice of mixed genetic background the increases amounted to 36-55% [9371826]. Serum levels of GH are elevated in mutant mice [9371826] and mutants are smaller than wild-type. IGF-1 and IGFBP-3 levels are also reduced in Ghr mutant mice [10875265]. The age-associated decline in memory retention is delayed in Ghr mutants [11336996]. Overexpression of a growth hormone antagonist (a mutated growth hormone that competes with the endogenous one) has no effect on lifespan [12933651]. House mouse
    foxo Forkhead box, sub-group O foxo overexpression extends lifespan. Activation of foxo in the adult pericerbral fat body is sufficient for lifespan extension [15175753]. Overexpression of foxo in the adult adipose tissue alone prolongs lifespan [15192154; 15175753]. Limited activation of foxo reduces the expression of Drosophila insulin-like peptide dilp-2 synthesized in neurons and, represses endogenous insulin-dependent signaling in peripheral fat body [15175753]. foxo is not required for DR, but its activity modulates the response. foxo null mutants are highly and significantly shorter-lived than wild-type on all food dilutions apart from 0.1 SY and under starvation. foxo null mutants are not more sensitive to starvation than wild-type. foxo overexpression in adult fat body under normal nutritional conditions leads to extension of lifespan of females and causes a right shift of the response curve of lifespan to DR [18241326]. Overexpression of dFOXO in adult fat body increases median, by 21-33%, and maximum lifespan as well as lowers the age-specific mortality at all ages, in two independent experiments. Overexpression of dFOXO increases lifespan by lowering the whole mortality trajectory, with no effect on slope (similar to DR). Initiation of dFOXO expression at different ages increases subsequent lifespan with the magnitude of increase decreasing as the animals were put on RU486 (which activates the foxo transgene via UAS) at older ages. The effects of removal of dFOXO overexpression at different ages closely mirrored those of induction of expression and produce shortest lifespan observed in animals taken of RU486 at the earlier ages [17465980]. Fruit fly
    daf-16 Abnormal DAuer Formation DAF-16, fork head-related transcription factor (daf-16) Mutations in daf-16 suppresses life-extension caused by mutations in daf-2 [8247153]. daf-16 is required for lifespan extension by mutation of daf-2 or age-1 [8247153]. RNAi against daf-16 decreases lifespan of wild-type, daf-2 or glp-1 mutants [22509016; 16530050]. Loss of function alleles of daf-16 shorten lifespan, but some alleles have lifespan equal to wild-type [8247153]. daf-16 mutation significantly reduces lifespan under AL (-20%), but does not prevent lifespan extension by sDR. In another experiment daf-16 mutation totally suppresses lifespan extension by sDR [16720740]. sDR does not stimulate DAF-16 translocation to the nucleus, but daf-16 mutation cancels out the ability of sDR to extend lifespan and to delay the decline in locomotor activity [17900900]. DR by bacterial dilution extends lifespan of daf-16 mutants [17538612]. daf-16 mutation decreases lifespan under AL, but fails to prevent bDR to further extend lifespan [18331616]. IF-induced lifespan-extension by either 24h/48h/72h per 4 days is significantly diminished in null mutants of daf-16. All these regimens extend lifespan of daf-16 to a lesser extent than that of wild-type. daf-16 partially mediates IF-induced longevity [19079239]. Glucose or glycerol does not shorten lifespan of daf-16 mutants [19883616]. daf-16 mutation cancels out the lifespan extension effect of sDR and PD, regardless of the concentration of bacteria or peptones. bDR significantly extends lifespan of daf-16 mutants, but to a lesser extent than that of wild-type. eat-2 mutation extends the lifespan of daf-16 mutants to the same extent than that of wild-type. Resveratrol extends lifespan of daf-16 mutants [19239417]. daf-16 RNAi completely blocks the lifespan extension by daf-2 mutation, but only partially by bDR. daf-16 RNAi attenuates protection against oxidative stress by bDR. daf-16 expression is induced by bDR [19924292]. Knockdown of daf-16 decreases mean and maximum lifespan by 50% and 54%, respectively [22509016]. DAF-16 reduces expression of rsks-1 and daf-15 [15253933; 22560223]. daf-16(mgDf47) decreases mean (18-37%) and maximum (29%) lifespan [18828672]. Overexpression of wild-type DAF-16 modestly increases lifespan by 20% [11747825], while overexpression of constitutive nuclear forms of DAF-16 increases lifespan only slightly [11381260]. daf-16(mu86) mutation decreases mean (44%) and maximum (18%) lifespan [15905404]. daf-16(mgDf47) decreases mean (18-37%) and maximum (29%) lifespan [18828672]. daf-16 mutants are dauer defective [7219552] and completely suppress all the phenotypes of daf-2 and age-1 mutations, including lifespan extension, dauer arrest, reduced fertility, and viability defects [8247153; 7789761; 9504918; 7789761]. Mutations in daf-16 also suppress lifespan extension of animals that have a germ line ablation [10360574]. Sex-specific lifespan potential requires daf-16 [10747056]. daf-16 mutation suppresses enhanced UV resistance as well as increase longevity of daf-2, daf-23, spe-26, and clk-1 mutants. Mutation in daf-16 does not alter the reduced fertility in spe-26. daf-16 mutants are more fertile than wild-type [8807294]. Nematode
    aak-2 AMP-Activated Kinase 2 AAK-2 could be a sensor that couples energy levels and insulin-like signals to lifespan. aak-2(ok524) knockout mutants have a 12% and 18% shorter mean and maximum lifespan, respectively as well as faster age-dependent accumulation of a lipofuscin-like fluorescent pigment in the intestine [15574588]. sDR increases AMP:ATP ratio. aak-2 mutation suppresses lifespan extension and delay of the decline in locomotor activity resulting from sDR. A constitutive active mutation of aak-2 is sufficient to cause increase stress resistance as well as to significantly extend lifespan. Both increased stress resistance and extended lifespan is reverted in daf-16 knockdown by RNAi. sod-3 mRNA is increased by constitutive active form of aak-2 and decreased by aak-2 mutation. The increase in sod-3 mRNA is dependent on expression of DAF-16. Worm and human AMPK phosphorylate DAF-16 (greatly enhanced by presence of AMP) at least in six residues (T166, S202, S314, S321, T463 and S466) [17900900]. aak-2 mutation cancels out the lifespan extension effect of sDR and PD, regardless of the concentration of bacteria or peptones. bDR significantly extends lifespan of aak-2 mutants, but to lesser extent than that of wild-type. eat-2 mutation extends the lifespan of aak-2 mutants to the same extent than that of wild-type. Resveratrol does not increase lifespan of aak-2 mutants [19239417]. daf-2(m577);aak-2(ok524) double mutant has a lifespan that is indistinguishable from those of aak-2(ok524) single mutant. Transgenic animals with a higher aak-2 gene dose live on average 13% longer with a maximum lifespan extension on up to 25% [15574588]. Nematode
    Factors are an extension of GenAge and GenDR.

    Comment on This Data Unit