Factors

We need to know every factor which determines lifespan.

Lifespan factors often but not always originate from defined genetic elements. They are not just genes, by definition they can be anything for which a Classifications schema can be build for that is related to the regulation of lifespan, such entities may include Single-Nucleotide Polymorphism, transcript variants, proteins and their complexes, compounds (i.e. small molecules like metabolites and drugs), etc. A factor should be based on a defined molecular entity or genomic position and been classified. It shall be highly flexible and scalable Concept.

While individual lifespan factors within each species or precise defined molecular entities will be captured within the Lifespan App, Data Entries of the Data App may summarize for instance the relevance of each factor class (e.g. homologous group; chemical derivate of related structure and properties, etc.) as well as draw overall conclusions. o

prometheus--2.jpg

  • symbol name observation species
    atf1 activating transcription factor 1 Activation of transcription factor Atf1 by Sty1 is required for chronological lifespan extension and enhanced heat stress resistance by DR. Deleting atf1 cancels out DR-mediated chronological lifespan extension and enhanced heat stress resistance. Overexpressing atf1 is not sufficient to promote chronological lifespan extension in cells lacking sty1 [20075862]. Fission yeast
    wis1 Constitutive active mutation of wis1 extends chronological lifespan and there is no further beneficial effect of DR [20075862]. Fission yeast
    rab-10 RAB family rab-10 RNA interference significantly extends lifespan of wild-type by 14 - 16%, of daf-16 mutants by 47%, and of daf-2 by 46%, but fails to significantly further extend lifespan of eat-2 mutants. rab-10 RNAi does not affect pumping, but similar to DR reduces and delays reproduction as well as cause a slender appearance. rab-10 mRNA is 2-fold downregulated in response to DR [16103914]. rab-10 RNAi significantly reduces paralysis in Q35YFP transgenic animals [18331616]. Nematode
    let-363 LEThal 363 let-363 RNAi significantly extends the lifespan of wild-type, but does not further extend the long lifespan of eat-2 mutant [17266679]. let-363 RNAi led to an average increase in lifespan of 8% in wild-type and 3% in eat-2 background. let-363 works synergistically with eat-2 mutation. Inhibition of let-363 leads to a phenotype similar to starved animals and modest increase in lifespan [16720740]. DR fails to significantly extend lifespan of let-363 RNAi-treated animals [19079239]. RNAi or mutation of let-363 results in a doubling of lifespan. RNAi of let-363 begun at hatching extends lifespan to the same extent as RNAi begun at the first day of adulthood. RNAi of let-363 fails to further extend the lifespan of daf-2(e1370) mutants [14668850]. Lifespan extension of let-363 RNAi does not require daf-16, as mutations in daf-16 do not suppress the long-lived phenotype of let-363 RNAi animals [14668850]. let-363 RNAi slightly extends lifespan of daf-16 mutation [16720740]. RNAi of let-363 causes many phenotypes similiar to daf-2 mutation: lipid accumulation in intestinal cells, reduced fertility, and reduced viability due to embryonic/larval arrest [14668850]. The let-363(h111) allele has no significant effect on lifespan [15253933]. Disruption of let-363 by RNAi appears to incomplete as lifespan is not extended as much asin let-363 mutants [14668850]. The let-363(h114) allele at 25.5 degree Celsius extends mean lifespan by 150% [14668850]. The absence of LET-363 activity causes developmental arrest at the L3 stage [12225660]. Nematode
    vps-34 related to yeast Vacuolar Protein Sorting factor 34 vps-34 RNAi does not significantly change lifespan of wild-type, but cancels out the lifespan extension effect of eat-2 mutation [18282106]. Nematode
    rheb-1 RHEB (Ras Homolog Enriched in Brain) hom rheb-1 RNAi extends lifespan by mimicking the DR effect. Under AL condition, rheb-1 RNAi extends lifespan by 19.1% and the longevity-promoting effects of two DR regimens sDR and intermittent fasting are abolished [19079239]. Knockdown of rheb-1 by RNAi only during the adulthood increases mean, median and 75th %ile lifespan by 18-25, 25 and 23-24%, respectively, but failed so in skn-1 or daf-16 mutant (with and without FUdR). Knockdown of rheb-1 dramatically enhances stress tolerance in an skn-1, but not daf-16-dependent manner [22560223]. Nematode
    hsp-12.6 Heat Shock Protein hsp-12.6 loss-of-function mutation significantly extends lifespan under AL and significantly suppresses intermittent fasting (IF)-induced increase in lifespan, to a similar extend to that of daf-16 mutation. HSP-12.6 expression is induced by fasting in various tissues, including body wall muscle and neuronal systems. hsp-16.2 is one of downstream targets of DAF-16 in IF-induced longevity. The extent of IF-induced longevity in daf-16 hsp-12.6 double mutant is similar to that of single hsp-12.6 or daf-16 mutants. hsp-12.6 and daf-16 function in same signaling pathway. Low insulin/IGF-like signaling in daf-2 results in constitutive activation of DAF-16 and higher expression of hsp-12.6 [19079239]. Expression of hsp-16.2 predicts longevity [13-18 in 22829775]. Nematode
    hif-1 HIF (hypoxia inducible factor) homolog 1 hif-1 mutation does not suppress lifespan extension of bDR or eat-2 mutation [19372390]. hif-1 deletion extends lifespan by 24% and inhibition of hif-1 by RNAi also extends adult lifespan. hif-1 mutation extends lifespan under AL, but does not further extend lifespan extension under modified sDR. Activation of hif-1 by egl-9 deletion diminishes lifespan extension by modified sDR. hif-1 acts independent of insulin-like signaling: Lifespan extension by hif-1 suppression does not require DAF-16, because inhibition of hif-1 by RNAi extends lifespan of wild-type and daf-16 null mutant to a similar level. hif-1 RNAi further extends the lifespan of daf-2 mutants. hif-1 is in the TOR pathway, downstream of S6K/rsks-1: Inhibition of hif-1 by RNAi does not further extend lifespan of daf-15 heterozygous mutants. Lifespan extension by deletion mutant of rsks-1 is fully suppressed by egl-9 mutation. hif-1 mutation does not further extend rsks-1 lifespan. pha-4 RNAi slightly reduces lifespan in wild-type and hif-1 mutants, but hif-1 mutation extends lifespan of animals treated with control or pha-4 RNAi to a similar level [19461873]. Nematode
    ire-1 IRE1 kinase related 1 ire-1 mutation reduces slightly the lifespan under AL, but reduces significantly the lifespan extension by DR. ire-1 mutant has a significantly reduced slope in mean lifespan versus food concentrations relative to wild-type. ire-1 mutation fully suppresses lifespan extension by hif-1 mutation under AL and DR conditions [19461873]. Nematode
    egl-9 EGg Laying defective 9 egl-9 deletion does not affect lifespan under AL. Lifespan extension under modified sDR regimen is diminished by egl-9 mutation. egl-9 mutation significantly suppresses the lifespan extension by a strong loss-of-function allele of eat-2. Lifespan extension by deletion mutants of rsks-1 is fully suppressed by egl-9 mutation [19461873]. Nematode
    ubc-18 UBiquitin Conjugating enzyme 18 ubc-18 overexpression is unable to extend lifespan (possibly, UBC-18 is not limiting for WWP-1 function in lifespan). Loss of ubc-18 function by mutation or RNAi reduces lifespan at 25 degree Celsius, but only slightly at 20 degree Celsius. RNAi depletion of ubc-18 completely suppresses increased longevity of eat-2 mutants. RNAi depletion of ubc-18 has no effect on long lifespan of isp-1 or daf-2 mutants. Combined knockdown of wwp-1 and ubc-18 by RNAi does not shorten lifespan any further than RNAi of either single gene. Knockdown of ubc-18 suppresses extended lifespan of wwp-1 overexpression [19553937]. Nematode
    aqp-1 AQuaPorin or aquaglyceroporin related 1 aqp-1 expression changes in response to glucose or glycerol. Similar to daf-16 and hsf-1 mutants, aqp-1 mutants were short-lived, and their short lifespan was not further decreased by glucose. Overexpression of aqp-1::GFP rescues short lifespan of aqp-1 deletion mutants and partially prevented glucose from shortening lifespan. Glucose or glycerol feeding downregulates aqp-1 in wild-type. In daf-16 and/or hsf-1 mutants aqp-1 is repressed and glucose feeding does not significantly affect its expression. aqp-1 mutation does not further decrease the short lifespan of daf-16 and/or hsf-1 mutants. aqp-1 transgene is expressed in pharynx and intestine (which behaves as entire endoderm of animal, including adipose tissues). Dietary glucose does not cause significant differences in levels of glucose or glycerol in wild-type vs. aqp-1 mutants [19883616]. Nematode
    nlp-7 Neuropeptide-Like Protein nlp-7 RNAi or overexpression reduces oxidative stress resistance and shortens lifespan of wild-type under AL. nlp-7 RNAi significantly reduces extended lifespan of eat-2 mutants, but failed to block lifespan extension of age-1 or clk-1 mutants. Lifespan of nlp-7 mutants increases only moderately by sDR [19783783]. nlp-7 expression is induced under DR via the use of a chemically defined axenic medium [17023606] and by sDR [19783783]. Nematode
    cup-4 Coelomocyte UPtake defective 4 cup-4 RNAi or overexpession reduces oxidative stress resistance and shortens lifespan of wild-type under AL. cup-4 RNAi significantly reduces the extended lifespan of eat-2 mutants, but failed to block lifespan extension of age-1 or clk-1 mutants. Lifespan of cup-4 mutants increases only moderately by sDR [19783783]. Nematode
    lgc-26 Ligand-Gated ion Channel 26 lgc-26 RNAi significantly decreases lifespan of eat-2 mutants specifically, whereas lifespan of age-1 or clk-1 mutants are not affected [19783783]. Nematode
    cup-5 Coelomocyte UPtake defective 5 cup-5 RNAi significantly decreases lifespan of eat-2 specifically, whereas lifespan of age-1 or clk-1 mutants are not affected [19783783]. Nematode
    ckr-2 CholecystoKinin Receptor homolog 2 ckr-2 RNAi significantly reduces the lifespan of eat-2 but not that of age-1 nor clk-1 mutants [19783783]. Nematode
    cbp-1 CBP/p300 homolog 1 bDR and daf-2 mutation induce cbp-1 expression. There is no decrease in cbp-1 expression in whole C. elegans during aging. Overexpression of cbp-1 does not significantly affect lifespan. daf-16 RNAi and cbp-1 RNAi reduce average lifespan under AL to about the same extent. Inhibiting cbp-1 via RNAi by 50%, specifically in adult phase and completely blocks lifespan extension of DD, bDR as well as eat-2, glp-1 and clk-1 mutation, but only partially that of daf-2 mutation and not at all that of cold. cbp-1 RNAi completely blocks the lifespan increase by daf-2 mutation under bDR. cbp-1 RNAi blocks the delay of other age-related pathologies by bDR. cbp-1 RNAi prevents protective effects of bDR and accelerates ABeta42-related pathology. bDR significantly delays onset of paralysis even in presence of cbp-1 RNAi. cbp-1 RNAi specifically in adults completely blocks lifespan extension by three distinct protocols of DR (mutation of eat-2), partly by daf-2 mutation but not of cold and blocks the delay of other age-related pathologies by bDR. cbp-1 RNAi has no effect on lifespan in daf-16 hypomorphic mutants. Combining cbp-1 and daf-16 RNAi in wild-type produces similar lifespan as either alone. Resistance to oxidative stress is strikingly reduced by cbp-1 RNAi and cbp-1 RNAi attenuates the protection against oxidative stress by bDR. cbp-1 RNAi accelerates accumulation of autofluorescence, but has no effect on activity, egg laying, or pharyngeal pumping. cbp-1 RNAi does not block induction of daf-16 or hsf-1 by bDR, but does block the induction of DAF-16 target gene, sod-3, and HSF-1 target gene, sip-1 by bDR. cbp-1 RNAi blocks induction of sod-3 expression by daf-2 RNAi. cbp-1 RNAi does not block the increased Nile Red staining produced by daf-2 mutation, but enhanced Nile Red staining. cbp-1 RNAi blocks the effect of bDR on metabolic gene expression from glycolysis towards beta-oxidation. Drugs that enhance histone acetylation increase lifespan and reduce ABeta42-related pathologies, but these protective effects are completely blocked by cbp-1 RNAi. cbp-1 RNAi decreases H4 Lys 5 acetylation and blocks the extension of lifespan as well as delays the onset of paralysis by ABeta1-42 transgene under AL and bDR by sodium butyrate (NaB) and trichostatin (TSA). cbp-1 RNAi does produce dye-filling defects in all C. elegans amphid neurons (ASI, ADL, ASK, AWB, ASH, and ASJ) [19924292]. Nematode
    dve-1 DVE (Defective proVEntriculus in Drosophila) homolog) 1 dve-1 RNAi attenuates lifespan extension by bDR, but only partially that of daf-2 mutation. dve-1 RNAi attenuates protection against oxidative stress by bDR. dve-1 expression is not induced by bDR [19924292]. Nematode
    Thor Null mutation in Thor (alias d4E-BP) causes a significant decrease in longevity (-25% median lifespan in males). Thor is strongly upregulated during starvation. foxo and Thor null mutants are compromised in stress resistant. Stress resistance of foxo null mutants is rescued by Thor overexpression [16055649]. Thor is upregulated on the protein level in a foxo-independent manner upon DR, while it is transcriptional induced in a foxo-dependent fashion by starvation. Thor null mutants cancel out DR-induced lifespan extension, because mutants exhibit a diminished change in lifespan when nutrient conditions were varied. Ubiquitously expression of Thor rescued DR response in females and males. Thor null mutants have a wild-type similar reduction in egg production upon DR. Ubiquitously overexpression of wild-type Thor causes no change under AL, but an activated allele (with more than 3-fold increased binding activity to delF4E) significantly extends lifespan of females (weak allele) and females as well as males (strong allele). Mean lifespan is extended by 11 to 40%. Median lifespan of males and females is enhanced by by 11 and 22%, respectively. Maximum lifespan is extended by 16 and 18% for males and females, respectively. Under DR (0.25% YE) there is no lifespan extension, beyond the effect of DR alone, in all (wild-type, weak and strong) Thor alleles [19804760]. Lifespan of animals with increased Pten and 4E-BP activity in muscle exhibit and extended mean and maximum lifespan by 20% and 15.8% [21111239]. Fruit fly
    l(3)neo18 lethal (3) neo18 RNA interference of l(3)neo18 in females increases mean lifespan by 14-18% when applied during development and adulthood in the whole organism and by 8-24% when applied in the neurons. The effect is more variable in males. A consistent increase (8-18%) is however observed for whole organisms RNAi in adults [19747824]. l(3)neo18 (alias CG9762) is translational upregulated upon DR. Under rich nutritional conditions lifespan of l(3)neo18 RNAi knockout animals is indistinguishable from wild-type, while upon DR, lifespan extension is diminished in males and females [19804760]. Fruit fly
    CG11015 CG11015 is translational upregulated upon DR. Under rich nutritional conditions lifespan of CG11015 RNAi treated animals is indistinguishable from that of controls, while upon DR, lifespan extension is diminished in males and females [19804760]. Fruit fly
    Ilp2 Insulin-like peptide 2 Flies with an ablation of median neurosecretary cells (which eliminates Ilp2 expression) exhibit a significant increase in mean and maximum lifespan over that of control flies and an increase to oxidative stress and starvation. The mutants also exhibit increased storage of lipid and carbohydrate, reduced fecundity, and reduced tolerance of heat and cold [15708981]. The median and maximum lifespan of females is increased by 33.5% and 40%, respectively. In males the median and maximum lifespan is increased by 10.5% and 27%, respectively [15708981]. Ilp2 RNA interference results in a 24% to 47% increase in median lifespan [19005568]. Ilp2 is transcriptional down-regulated in long-lived mutants. Ilp2 null mutants are significant longer-lived with a 8-13% longer median lifespan, but have a normal DR response. Ilp2 Ilp3 Ilp5 triple null mutants fail to have a normal response to DR. Their response is right shifted, with mutants shorter-lived compared to wild-type on low but longer-lived on high yeast concentrations [20195512]. Fruit fly
    Ilp3 Insulin-like peptide 3 Ilp3 null mutants have a normal lifespan under AL and a normal DR response. Ilp2 Ilp3 Ilp5 triple null mutants fail to have a normal response to DR. Their response is right shifted, with mutants being shorter-lived compared to wild-type on low but longer-lived on high yeast concentrations [20195512]. Fruit fly
    Ilp5 Insulin-like peptide 5 Abundance of Ilp5 mRNA is reduced under DR. Ilp5 null mutants have a normal lifespan under AL and a normal DR response. Ilp2 Ilp3 Ilp5 triple null mutants fail to have a normal response to DR. Their response is right shifted, with mutants being shorter-lived compared to wild-type on low but longer-lived on high yeast concentrations [20195512]. Fruit fly
    Factors are an extension of GenAge and GenDR.

    Comment on This Data Unit