Factors

We need to know every factor which determines lifespan.

Lifespan factors often but not always originate from defined genetic elements. They are not just genes, by definition they can be anything for which a Classifications schema can be build for that is related to the regulation of lifespan, such entities may include Single-Nucleotide Polymorphism, transcript variants, proteins and their complexes, compounds (i.e. small molecules like metabolites and drugs), etc. A factor should be based on a defined molecular entity or genomic position and been classified. It shall be highly flexible and scalable Concept.

While individual lifespan factors within each species or precise defined molecular entities will be captured within the Lifespan App, Data Entries of the Data App may summarize for instance the relevance of each factor class (e.g. homologous group; chemical derivate of related structure and properties, etc.) as well as draw overall conclusions. o

prometheus--2.jpg

  • Types: + -
    Gene (2)  
  • symbol name observation species
    PAN2 Poly(A)-binding protein-dependent poly(A) riboNuclease 2 Deletion mutant of PAN2 live approximately as long as wild-type under starvation/extreme DR [20657825]. Budding yeast
    BUL1 Binds Ubiquitin Ligase 1 Deletion of BUL1 does non-significantly reduces mean chronological lifespan under starvation/extreme DR [20657825]. Budding yeast
    PPG1 Protein Phosphatase involved in Glycogen accumulation 1 PPG1 deletion reduces significantly mean chronological lifespan under starvation/extreme DR [20657825]. Budding yeast
    FAR11 Factor ARrest 3 Deletion of FAR11 significantly reduces mean chronological lifespan under starvation/extreme DR relatively to wild-type [20657825]. Budding yeast
    FAR3 Factor ARrest 3 Deletion of FAR3 significantly reduces mean chronological lifespan under starvation/extreme DR relatively to wild-type [20657825]. Budding yeast
    SSN2 Suppressor of SNf1 Although SSN2 was identified as a potential long-lived mutant strain in a bar-code screen, deletion of SSN2 does not significantly affect chronological lifespan under starvation/extreme DR [20657825]. Budding yeast
    APD1 Actin Patches Distal 1 Although APD1 was identified as a potential long-lived mutant strain in a bar-code screen, deletion of APD1 does not significantly affect chronological lifespan under starvation/extreme DR [20657825]. Budding yeast
    VPS36 Vacuolar Protein Sortin 36 VPS36 deletion mutants have a chronological lifespan as long as wild type BY4741. Thus, Vps36 is not necessary for the starvation/extreme DR-dependent lifespan extension [20657825]. Budding yeast
    CKB2 Casein Kinase Beta' subunit Lack of Ckb2 promotes a modest but significant chronological lifespan extension and marked increase in yeat resistance [20657825]. Budding yeast
    ATG18 The replicative lifespan of ATG18 deletion mutant is not shorter than that of wild-type under DR [18690010]. Budding yeast
    VPS27 Under starvation conditions VPS27 deletion mutants have a dramatically reduced lifespan [20953148]. Budding yeast
    VPS25 Under starvation conditions VPS25 deletion mutations have dramatically reduced lifespan [20953148]. Budding yeast
    VPS21 Vacuolar Protein Sorting 21 Lack of VPS21 reduces lifespan under starvation conditions to a level similiar to that of wild-type cells incubated in synthetic complete medium and therefore blocked the lifespan-extending effect of DR [20657825]. Budding yeast
    VPS8 Vacuolar Protein Sorting 8 Lack of VPS8 reduces lifespan under starvation conditions to a level similiar to that of wild-type cells incubated in synthetic complete medium and therefore blocked the lifespan-extending effect of DR [20657825]. Budding yeast
    Hesperidin Hesperidin derived from the Citrus genus extends replicative lifespan at doses of 5 and 10 microMolar. Hesperdin inihibts ROS and UTH1 gene expression, but increases Sir2 and SOD gene expression. UTH1 and SKN7 are involved in lifespan extension mediated by hesperidin [22484922]. Budding yeast
    HFI1 Histone H2A Functional Interactor 1 ADA1 deletion shortens replicative lifespan by approximately 80%. This is not a premature aging phenotype as ADA1 cells do not become prematurely sterile or shibit other biomarkers of aging. ADA1 mutants are temperature-sensitive and respiratory-deficent. Budding yeast
    MSN2 Multicopy suppressor of SNF1 mutation 2 Deletion of MSN2 and MSN4 extends replicative lifespan and is further extended by cyr1::mTn [14741356]. Deletion of MSN2 and MSN4 does not significantly decrease chronological lifespan under AL, but attenuates chronological lifespan extension by water starvation and 0.5% glucose restriction [18225956] as well as cancels out lifespan extension of cyr1::mTn [14741356] and decreases chronological lifespan extension of ras2 deletion mutant [12586694]. Simultaneous deletion of MSN2 and MSN4 has no effect on chronological lifespan, but prevents lifespan extension by RAS2 deletion [12586694]. msn2 msn4 has no effect on replicative lifespan in PSY316, and does not prevent lifespan extension by DR [11000115] or by high osmolarity [12391171]. Budding yeast
    MSN4 Multicopy suppressor of SNF1 mutation 4 Deletion of MSN2 and MSN4 extends replicative lifespan and is further extended by cyr1::mTn [14741356]. Deletion of MSN2 and MSN4 does not significantly decrease chronological lifespan under AL, but attenuates chronological lifespan extension by water starvation and 0.5% glucose restriction [18225956] as well as cancels out lifespan extension of cyr1::mTn [14741356] and decreases chronological lifespan extension of ras2 deletion mutant [12586694]. Simultaneous deletion of MSN2 and MSN4 has no effect on chronological lifespan, but prevents lifespan extension by RAS2 deletion [12586694]. msn2 msn4 has no effect on replicative lifespan in PSY316, and does not prevent lifespan extension by DR [11000115] or by high osmolarity [12391171]. Budding yeast
    HST1 Homolog of SIR Two (SIR2) 1 Deletion of HST1 blocks the residual replicative lifespan extension by hxk2 mutant in a sir2;fob1;hst2 triple mutant background [16051752]. However, DR can increases the replicative lifespan to a similar extent in sir2;fob1;hst1;hst2 quadruple mutant cells as in sir2;fob1 double mutant cells under 0.5, 0.05 and 0.005% glucose conditions and even by hxk2 deletion mutant [16741098; 17129213]. Budding yeast
    PCK1 Phosphoenolpyruvate CarboxyKinase 1 Loss of Pck1 activity blocks chronological lifespan extension caused by water starvation. Knockout of PCK1 dramatically reduces chronological lifespan in both water (extreme DR) and glucose-containing medium. pck-1-K514Q mutation which abrogates enzymatic activity of Pck1, just like SIR2 deletion, extends chronological lifespan in water. Deletion of SIR2 does not alter the lifespan of PCK1 deletion mutant, pck1-K514R, and pck1-K514Q mutants [19303850]. Budding yeast
    GSH1 glutathione (GSH) 1 Deletion of GSH1 confers deficiency in glutathione biosynthesis and further increases chronological lifespan under 0.5% glucose restriction, but does not extend chronological lifespan under 2% glucose [18840459]. Therefore, GSH1 has a positive interaction with DR [18840459]. Budding yeast
    ERG3 ERGosterol biosynthesis Deletion of ERG3 decreases replicative lifespan under AL, cancels out replicative lifespan extension of 0.5% glucose DR and results under DR also into a shorter replicative lifespan than under AL [18690010]. Budding yeast
    SUR4 SUppressor of Rvs161 and rvs167 mutations 4 Deletion of SUR4 cancels out replicative lifespan extension of 0.5% glucose DR [18690010]. Budding yeast
    LCB4 Long-Chain Base 4 Deletion of LCB4 increases replicative lifespan and cancels out replicative lifespan extension of 0.5% glucose DR [18690010]. Budding yeast
    HSP12 Heat Shock Protein 12 HSP12 deletion slightly increases mean, medium, and maximum replicative lifespan by 24, 27, and 3% under AL, but totally abolishes the lifespan extending effect of moderate DR [Alan Morgan, personal communication; Herbert et al. in press]. HSP12 encodes a small heat-shock protein which mRNA levels increases in response to diverse environmental stresses (including heat-, osmotic-, and oxidative stress) [11102521; 10722658] and its protein levels are induced upon both DR and high osmolarity. However, HSP12 deletion has no effect on resistance to variety of stresses (including oxidative stress). Hsp12 is monomeric, has negligible in vitro protein chaperone activity, and is intrinsically unstructured/unfolded in water, but switches to a dynamic 4-helical conformation upon membrane binding. These all indicates that Hsp12 has membrane-stabilising "lipid chaperone" functions and while its low levels exerts some negative effects on lifespan high levels of Hsp12 are required for DR-induced lifespan extension [Alan Morgan, personal communication; Herbert et al. in press]. Budding yeast
    Factors are an extension of GenAge and GenDR.

    Comment on This Data Unit