Factors

We need to know every factor which determines lifespan.

Lifespan factors often but not always originate from defined genetic elements. They are not just genes, by definition they can be anything for which a Classifications schema can be build for that is related to the regulation of lifespan, such entities may include Single-Nucleotide Polymorphism, transcript variants, proteins and their complexes, compounds (i.e. small molecules like metabolites and drugs), etc. A factor should be based on a defined molecular entity or genomic position and been classified. It shall be highly flexible and scalable Concept.

While individual lifespan factors within each species or precise defined molecular entities will be captured within the Lifespan App, Data Entries of the Data App may summarize for instance the relevance of each factor class (e.g. homologous group; chemical derivate of related structure and properties, etc.) as well as draw overall conclusions. o

prometheus--2.jpg

  • symbol name observation species
    ttll-9 Tubulin Tyrosine Ligase Like Knockdown of ttll-9 throughout the entire life increases the lifespan by 3% [23698443]. Nematode
    nhr-62 Nuclear Hormone Receptor family NHR-62 is required for metabolic and physiologic responses associated with DR-induced longevity. *nhr-62* mediates the longevity response of *eat-2* mutants and blunts the longevity by bacterial food dilution [Heestand, et al. 2012]. Mutation in *nhr-62* suppresses the lifespan extension of eat-2(ad465) animals (p<0.001) [Heestand et al. 2013]. Wild-type (N2) worms with extrachromosomal array dhEx627 (carrying a wild-type nhr-62) exhibit a significant increase in lifespan compared to wild-type (p<0.001) [Heestand et al. 2013]. Nematode
    foxo Forkhead box, sub-group O foxo overexpression extends lifespan. Activation of foxo in the adult pericerbral fat body is sufficient for lifespan extension [15175753]. Overexpression of foxo in the adult adipose tissue alone prolongs lifespan [15192154; 15175753]. Limited activation of foxo reduces the expression of Drosophila insulin-like peptide dilp-2 synthesized in neurons and, represses endogenous insulin-dependent signaling in peripheral fat body [15175753]. foxo is not required for DR, but its activity modulates the response. foxo null mutants are highly and significantly shorter-lived than wild-type on all food dilutions apart from 0.1 SY and under starvation. foxo null mutants are not more sensitive to starvation than wild-type. foxo overexpression in adult fat body under normal nutritional conditions leads to extension of lifespan of females and causes a right shift of the response curve of lifespan to DR [18241326]. Overexpression of dFOXO in adult fat body increases median, by 21-33%, and maximum lifespan as well as lowers the age-specific mortality at all ages, in two independent experiments. Overexpression of dFOXO increases lifespan by lowering the whole mortality trajectory, with no effect on slope (similar to DR). Initiation of dFOXO expression at different ages increases subsequent lifespan with the magnitude of increase decreasing as the animals were put on RU486 (which activates the foxo transgene via UAS) at older ages. The effects of removal of dFOXO overexpression at different ages closely mirrored those of induction of expression and produce shortest lifespan observed in animals taken of RU486 at the earlier ages [17465980]. Fruit fly
    Gclm Glutamate-cysteine ligase modifier subunit Overexpression of Gclm extends the mean lifespan by up to 24% [16148000]. Fruit fly
    Ef1alpha48D Elongation factor 1alpha48D Overexpression of Ef1alpha48D (transformed with a P-element vector and under control of hsp70 regulatory sequences) results in lifespan extension by 18-41%. The decrease in protein synthesis that accompanies aging is preceded by a decrease in EF-1 alpha protein and mRNA [2508089]. Fruit fly
    Gclc Glutamate-cysteine ligase catalytic subunit Overexpression of Gclc extends mean and maximum lifespan by up to 50% [16148000]. Fruit fly
    Hsp26 Heat shock protein 26 Overexpression of Hsp26 (by the UAS/GAL4 system) increases stress resistance and extends the mean lifespan by 30% [15308776]. Fruit fly
    Hsp27 Heat shock protein 27 Overexpression of Hsp27 (by the UAS/GAL4 system) increases stress resistance and extends the mean lifespan by 30% [15308776]. Fruit fly
    Hsp68 Heat shock protein 68 Overexpression of Hsp68 extends modestly (by around 15%) median and maximum lifespan [14602080]. Hsp68 is activated by the JNK pathway and target gene of foxo [20976250]. There is a consistent and significant lifespan extension by 20% in both males and females when hsp68 is overexpressed in somatic cells. hsp68 overexpression using GMR-Gal4, and eye-specific driver that expresses Gal4 in salivary glands has no effects. Hsp78 overexpression using the weaker 5961FS driver moderately but significantly extends lifespan [20976250]. Fruit fly
    Eip71CD Ecdysone-induced protein 28/29kD Overexpression of Eip71CD (alias MsrA) in nervous system extends the lifespan by up to 70%, increased resistance to oxidative stress, and delays the onset of senescence-induced decline in activity levels and reproductive capacity. Eip71CD is a downstream effector of foxo [22310715]. Mean and maximum lifespan is increased by up to 2-% in animals that overexpress Eip71CD [20655917]. Fruit fly
    mys myospheroid mys mutants exhibit ameliorated age-related declines in locomotor activity and an increase in mean lifespan of 20% [14570233]. Fruit fly
    Pcmt Protein-L-isoaspartate (D-aspartate) O-methyltransferase Overexpression of Pcmt extends lifespan by 32-39% at 29 degrees but not at 25 degrees [11742076]. The adult lifespan of animals overexpressing Pcmt is extended [18772467]. Fruit fly
    Pka-C1 cAMP-dependent protein kinase 1 PKA-overexpressing flies (hsPKA*/+) have an about 30% extended maximum lifespan [17369827]. Fruit fly
    Sir2 Overexpression of Sir2 (alias dSir2) extends lifespan by up to 57% and specifically median lifespan by 40-60%, whereas a decrease in Sir2 activity by mutation blocks the life-extending effect of caloric reduction or rpd3 mutations [15520384]. rpd3 mutants fed normal food and wild-type fed a low-calorie diet increase dSir2 expression two-fold [12459580]. Sir2 mutation does not reduce lifespan under AL. Ubiquitous Sir2 overexpression causes a 4-fold increase in Sir2 mRNA expression and an up to 57% increase in average lifespan (29% for females and 18% for males). A 10 - 20% increase in Sir2 mRNA levels causes no lifespan extension. High levels of Sir2 protein is found in nuclei of neurons and in nuclei and cytoplasm of fat body cells. Neuronal Sir2 overexpression extends average lifespan by 52% in females and 20% in males. Motor-neuronal specific expression fails to cause lifespan extension. Flies with no or with several decreased Sir2 gene function have no lifespan extension under DR. DR fails to cause further increase in lifespan or even reduces lifespan toward normal of Sir2 overexpression mutants. Mild Sir2 overexpression in the fat-body extends lifespan and reduces relative body fat content in both males and females [22661237]. Sir2 in the adult fat body regulates longevity in a diet-depending manner. A diet-dependent lifespan phenotype of Sir2 perturbations (both knockdown and overexpression) in the fat-body, but not in muscles, negates the effects of background genetic mutants. Sir2 knockdown abrogates fat-body dFoxo-dependent lifespan extension [23246004]. Decreased expression of Sir2 and Sir2-like genes in all cells causes lethality during development. Suppression of the Sir2 in neurons decreases the median lifespan by 10-30%, while ubiquitinous silinecing of the Sir2-like genes shortens lifespan. The effects are server at 28°C that at 25°C [17159295]. Fruit fly
    Sod1 Superoxide dismutase Simultaneous overexpression of catalase and Sod (alias Sod1) results in a one-third lifespan extension, a slower rate of mortality acceleration, and a delayed loss in physical performance, but neither has any effect on lifespan alone [8108730]. General overexpression of Sod (also known as Cu/ZnSOD) alone is sufficient to extend lifespan by up to 48%. Simultaneous overexpression of catalase with Cu/ZnSOD has no added benefit, presumably due to a pre-existing excess of catalase [9858546]. Sod1 reduction by knockdown or knockout blunts the lifespan extension by a high sugar-low protein diet, but not a low-calorie diet [22672579]. Sod mutant flies display infertility and a reduction in lifespan [2539600]. Fruit fly
    Sod2 Superoxide dismutase 2 (Mn) RNA interference of Sod2 results in increased oxidative stress and early-onset mortality in young adults [12456885]. Overexpression of Sod2 by 5-115% decreases lifespan by 4-5% without any compensatory changes in metablic rate, level of physical activity, or the levels of other antioxidants (Sod, Cat, and glutathione) [10545213]. Targeted overexpression of Sod2 in motor neurons alone extends lifespan by 30% [11113599]. Induced overexpression of Sod2 in adult animals extends lifespan up to 37% [12072463]. Overexpression of catalase in combination with SOD2 has no added benefit for lifespan [12072463]. Animals overexpressing SOD2 or catalase do not exhibit a decrease in metabolism as measured by oxgen consumption [12072463]. Sod2 overexpression results in a 20% increase in mean and maximum lifespan [18067683]. Fruit fly
    sug sugarbabe Overexpression of sug (from a doxycycline-inducible promoter) results in a 5-9% increase in mean lifespan [12620118]. Fruit fly
    TrxT Thioredoxin T Overexpression of TrxT in neurons increases the level of locomotor activity in aged flies and extends the mean lifespan by 15% [17301052]. Fruit fly
    Atg2 Autophagy-specific gene 2 Atg2 overexpression increases average female lifespan by 28% [18059160]. Fruit fly
    bam bag of marbles Bam mutants have an extended lifespan due to germ cell loss. Lifespan of females is on average up to 50% higher and that of males on average s up to 27.8% higher [18434551]. Fruit fly
    fh frataxin homolog Overexpression of fh in the mitochondria of female transgenic animals increases antioxidant capability, resistance to oxidative stress insults, and longevity [18258192]. Fruit fly
    Gadd45 growth arrest and DNA damage-inducible gene 45 Gadd45 overexpression in the nervous system leads to a significant increase of lifespan without a decrease in fecundity and locomotor activity. The lifespan extension effect is more pronounced in males than in females. Additional maximum lifespan is also extended. The maximum lifespan is increased by 50% and 59% for females and males, respectively. The median lifespan is extended by 46 and 77% for females and males, respectively [22661237]. Fruit fly
    GstS1 Glutathione S transferase S1 GstS1 overexpression increases the mean lifespan by 33% [18059160]. Fruit fly
    hebe Adult-specific overexpression of hebe increases the lifespan by 5-30% and modulates late-age female fecundity. Female and male mean lifespan is up to 11% and 24% higher [19011900]. Fruit fly
    Hsc70-3 Heat shock protein cognate 3 Overexpression of Hsc70-3 increases average female lifespan by 27% [18059160]. Fruit fly
    • Page 1 of 2
    • 25 of 38 factors
    Factors are an extension of GenAge and GenDR.

    Comment on This Data Unit