Factors

We need to know every factor which determines lifespan.

Lifespan factors often but not always originate from defined genetic elements. They are not just genes, by definition they can be anything for which a Classifications schema can be build for that is related to the regulation of lifespan, such entities may include Single-Nucleotide Polymorphism, transcript variants, proteins and their complexes, compounds (i.e. small molecules like metabolites and drugs), etc. A factor should be based on a defined molecular entity or genomic position and been classified. It shall be highly flexible and scalable Concept.

While individual lifespan factors within each species or precise defined molecular entities will be captured within the Lifespan App, Data Entries of the Data App may summarize for instance the relevance of each factor class (e.g. homologous group; chemical derivate of related structure and properties, etc.) as well as draw overall conclusions. o

prometheus--2.jpg

  • symbol name observation species
    PGA3 Processing of Gas1p and ALP Low glucose condition induces expression and activity of plasma membrane NADH coenzyme Q reductase (PGA3). Overexpression of PGA3 extends replicative and chronological lifespan by 20-30% [19239415]. Budding yeast
    Zw Zwischenferment Mean lifespan of G6PD overexpressor flies is extended in comparison with driver and responder controls, armadillo-GAL4 (up to 38%), Tubulin-GAL4 (up to 29%), C23-GAL4 (up to 27%), da-GAL4 (up to 24%), D42-GAL4 (up to 18%) and Appl-GAL4 (up to 16%). The maximum lifespan is also increased [18809674]. G6PD enzymatic activity as well as levels of NADPH, NADH, and the GSH/GSSG ration are increased [18809674]. Fruit fly
    Pawr PRKC, apoptosis, WT1, regulator Mice overexpressing the pro-apoptotic protein domain were resistant to tumours. Transgenic animals showed normal fertility, viability, and ageing, though they were slightly longer-lived possibly because of the cancer-resistance. House mouse
    mir-34 mir-34 loss triggers a gene expression profile of accelerated brain aging, late-onset brain degeneration and catastrophic decline in survival, while mir-34 upregulation extends median lifespan and mitigated neurodegeneration induced by polyglutamine. Fruit fly
    MTF-1 Metal response element-binding Transcription Factor-1 MTF-1 overexpression in either the peripheral nervous system or motorneurons extends both mean and maximum lifespan by 40% in males [18775584]. Fruit fly
    mir-246 Mutating mir-246 decreases mean and maximum lifespan by 12%, while its overexpression increases mean and maximum lifespan by 6 and 5 - 14%, respectively [21129974]. Nematode
    unc-31 UNCoordinated Mutation in unc-31 increases hermaphrodite lifespan by approximately 70% and male lifespan by 150% [10377425; 11063684; 10747056]. unc-31 also cause constitutive dauer formation. Both phenotypes, enhanced longevity and constitutive dauer formation are suppressed by mutations in daf-16. unc-31 site of action is neuronal [10377425]. unc-31 mutants are uncoordinated [4366476] and exhibit dauer constitutive phenotype [10377425], are lethargic, feed constitutively, are defective in egg-laying, and produce dauer larvae that fail to recover [8462849]. Nematode
    Atg8a Autophagy-related 8a Mutations in Atg8a results in reduced lifespan and increased sensitivity to oxidative stress while enhanced expression in older fly brains extends average adult lifespan by 56% and promotes resistance to oxidative stress [18059160]. Atg8a mutation reduces the maximum lifespan by 25% under starvation conditions [17617737]. Loss-of-function mutation in Atg8a reduces mean lifespan by 11 - 25% and maximum lifespan by 3 - 22% [17435236]. Fruit fly
    daf-16 Abnormal DAuer Formation DAF-16, fork head-related transcription factor (daf-16) Mutations in daf-16 suppresses life-extension caused by mutations in daf-2 [8247153]. daf-16 is required for lifespan extension by mutation of daf-2 or age-1 [8247153]. RNAi against daf-16 decreases lifespan of wild-type, daf-2 or glp-1 mutants [22509016; 16530050]. Loss of function alleles of daf-16 shorten lifespan, but some alleles have lifespan equal to wild-type [8247153]. daf-16 mutation significantly reduces lifespan under AL (-20%), but does not prevent lifespan extension by sDR. In another experiment daf-16 mutation totally suppresses lifespan extension by sDR [16720740]. sDR does not stimulate DAF-16 translocation to the nucleus, but daf-16 mutation cancels out the ability of sDR to extend lifespan and to delay the decline in locomotor activity [17900900]. DR by bacterial dilution extends lifespan of daf-16 mutants [17538612]. daf-16 mutation decreases lifespan under AL, but fails to prevent bDR to further extend lifespan [18331616]. IF-induced lifespan-extension by either 24h/48h/72h per 4 days is significantly diminished in null mutants of daf-16. All these regimens extend lifespan of daf-16 to a lesser extent than that of wild-type. daf-16 partially mediates IF-induced longevity [19079239]. Glucose or glycerol does not shorten lifespan of daf-16 mutants [19883616]. daf-16 mutation cancels out the lifespan extension effect of sDR and PD, regardless of the concentration of bacteria or peptones. bDR significantly extends lifespan of daf-16 mutants, but to a lesser extent than that of wild-type. eat-2 mutation extends the lifespan of daf-16 mutants to the same extent than that of wild-type. Resveratrol extends lifespan of daf-16 mutants [19239417]. daf-16 RNAi completely blocks the lifespan extension by daf-2 mutation, but only partially by bDR. daf-16 RNAi attenuates protection against oxidative stress by bDR. daf-16 expression is induced by bDR [19924292]. Knockdown of daf-16 decreases mean and maximum lifespan by 50% and 54%, respectively [22509016]. DAF-16 reduces expression of rsks-1 and daf-15 [15253933; 22560223]. daf-16(mgDf47) decreases mean (18-37%) and maximum (29%) lifespan [18828672]. Overexpression of wild-type DAF-16 modestly increases lifespan by 20% [11747825], while overexpression of constitutive nuclear forms of DAF-16 increases lifespan only slightly [11381260]. daf-16(mu86) mutation decreases mean (44%) and maximum (18%) lifespan [15905404]. daf-16(mgDf47) decreases mean (18-37%) and maximum (29%) lifespan [18828672]. daf-16 mutants are dauer defective [7219552] and completely suppress all the phenotypes of daf-2 and age-1 mutations, including lifespan extension, dauer arrest, reduced fertility, and viability defects [8247153; 7789761; 9504918; 7789761]. Mutations in daf-16 also suppress lifespan extension of animals that have a germ line ablation [10360574]. Sex-specific lifespan potential requires daf-16 [10747056]. daf-16 mutation suppresses enhanced UV resistance as well as increase longevity of daf-2, daf-23, spe-26, and clk-1 mutants. Mutation in daf-16 does not alter the reduced fertility in spe-26. daf-16 mutants are more fertile than wild-type [8807294]. Nematode
    mys myospheroid mys mutants exhibit ameliorated age-related declines in locomotor activity and an increase in mean lifespan of 20% [14570233]. Fruit fly
    Naam Nicotinamide amidase Naam overexpression increases mean and maximum lifespan by 30% in both females and males. The lifespan extension is reversed by Sir2 mutants, indicating the it is dependent on Sir2 [18678867]. Fruit fly
    POSH Plenty of SH3s Neural-specific overexpression of POSH extends the mean lifespan of adult flies by 14% at 25°C. Ectopic expression of POSH during development results in morphological abnormalities [11868902]. Fruit fly
    Jafrac1 thioredoxin peroxidase 1 Neuronal overexpression of Jafrac1 significantly increases both mean and maximum lifespan, while neuronal knockdown as well as loss of function mutation, causes a reduction in lifespan by 30%. The mean lifespan is 26% and 29% higher in females and males, respectively. The maximum lifespan is increased by 22% and 26% in females and males, respectively [19720829]. There is a consistent and significant lifespan extension (15% mean lifespan increase) in both males and females when Jafrac1 is overexpressed in somatic cells. Jafrac1 overexpression using the weaker 5961FS driver moderately but significantly extends lifespan [20976250]. Fruit fly
    NF1 Neurofibromin 1 NF1 mutants have a shortened lifespan and exhibited increased vulnerability to heat and oxidative stress as well as reduced mitochondrial respiration and elevated ROS production. Overexpression of NF1 increases mitochondrial respiration and reduced ROS production. It increases mean lifespan by 49% in males and 68% in females and maximum lifespan by 38% in males and 52% in females. It also improved reproductive fitness [17369827]. Fruit fly
    nhr-62 Nuclear Hormone Receptor family NHR-62 is required for metabolic and physiologic responses associated with DR-induced longevity. *nhr-62* mediates the longevity response of *eat-2* mutants and blunts the longevity by bacterial food dilution [Heestand, et al. 2012]. Mutation in *nhr-62* suppresses the lifespan extension of eat-2(ad465) animals (p<0.001) [Heestand et al. 2013]. Wild-type (N2) worms with extrachromosomal array dhEx627 (carrying a wild-type nhr-62) exhibit a significant increase in lifespan compared to wild-type (p<0.001) [Heestand et al. 2013]. Nematode
    Thor Null mutation in Thor (alias d4E-BP) causes a significant decrease in longevity (-25% median lifespan in males). Thor is strongly upregulated during starvation. foxo and Thor null mutants are compromised in stress resistant. Stress resistance of foxo null mutants is rescued by Thor overexpression [16055649]. Thor is upregulated on the protein level in a foxo-independent manner upon DR, while it is transcriptional induced in a foxo-dependent fashion by starvation. Thor null mutants cancel out DR-induced lifespan extension, because mutants exhibit a diminished change in lifespan when nutrient conditions were varied. Ubiquitously expression of Thor rescued DR response in females and males. Thor null mutants have a wild-type similar reduction in egg production upon DR. Ubiquitously overexpression of wild-type Thor causes no change under AL, but an activated allele (with more than 3-fold increased binding activity to delF4E) significantly extends lifespan of females (weak allele) and females as well as males (strong allele). Mean lifespan is extended by 11 to 40%. Median lifespan of males and females is enhanced by by 11 and 22%, respectively. Maximum lifespan is extended by 16 and 18% for males and females, respectively. Under DR (0.25% YE) there is no lifespan extension, beyond the effect of DR alone, in all (wild-type, weak and strong) Thor alleles [19804760]. Lifespan of animals with increased Pten and 4E-BP activity in muscle exhibit and extended mean and maximum lifespan by 20% and 15.8% [21111239]. Fruit fly
    BMH2 Brain Modulosignalin Homologue 2 Overexpressing 14-3-3 protein, Bmh2, significantly extends median chronological lifespan by activating stress response [19805817]. Budding yeast
    AVT1 Amino acid Vacuolar Transport 1 Overexpressing or deleting AVT1 is sufficient to extend or shorten replicative lifespan, respectively [23172144]. Overexpression of AVT1 prevents mitochondrial dysfunction, prevents alterations in mitochondrial structure and ΔΨ of aged cells even through the vacuolar acidity is reduced in these cells. AVT1 overexpression extends the mean, median and maximum replicative lifespan by 28, 28, and 22%, respectively [23172144]. Deletion of AVT1 accelerates the development of age-induced mitochondrial dysfunction without effecting the kinetics of vacuolar acidity decline and prevents the suppression of mitochondrial dysfunction by VMA1 and VPH2 overexpression without affecting vacuolar acidity. AVT1 deletion decreases mean, median and maximum replicative lifespan by 21, 22, and 12%, respectively [23172144]. Budding yeast
    Ucp2 uncoupling protein 2 (mitochondrial, proton carrier) Overexpression in hypocretin neurons results in mice with elevated hypothalamic temperature and reduction of core body temperature and a 12% increase in median lifespan in males and 20% increase in females. House mouse
    TLC1 Overexpression of a truncated allele of TLC1 abrogates telomere silencing [7545955], shortened telomeres and extends replicative lifespan approximately by 20% [9275199]. Deletion of TLC1 might decrease replicative lifespan [Nugent et al., 1996]. Budding yeast
    AAT1 Aspartate AminoTransferase 1 Overexpression of AAT1 extends replicative lifespan by 25% and does not synergize with 0.5% glucose restriction [18381895]. Budding yeast
    abu-11 Activated in Blocked Unfolded protein response 11 Overexpression of abu-11 extends mean lifespan by 9% to 28% [16256736]. Nematode
    Nfkbia nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha Overexpression of an endothelial dominant-negatvie I?B? gene prolonged the lifespan [22302838]. House mouse
    Cct1 CTP:phosphocholine cytidylyltransferase 1 Overexpression of Cct1 from a doxycycline-inducible promoter results in a 6 - 8% increase in mean lifespan (in the PdL x rtTA; Oregon-R x rtTA strain) [12620118]. Cct1 exhibits a non-coding region difference unique to animals under experimental evolution selected for longevity and is upregulated in head of animals that were selected for longevity at all ages beyond the day of eclosion [23106705]. Fruit fly
    CG10383 Overexpression of CG10383 in males increases mean and maximum lifespan by 12% and 8%, respectively [22366109]. Fruit fly
    Factors are an extension of GenAge and GenDR.

    Comment on This Data Unit