Factors

We need to know every factor which determines lifespan.

Lifespan factors often but not always originate from defined genetic elements. They are not just genes, by definition they can be anything for which a Classifications schema can be build for that is related to the regulation of lifespan, such entities may include Single-Nucleotide Polymorphism, transcript variants, proteins and their complexes, compounds (i.e. small molecules like metabolites and drugs), etc. A factor should be based on a defined molecular entity or genomic position and been classified. It shall be highly flexible and scalable Concept.

While individual lifespan factors within each species or precise defined molecular entities will be captured within the Lifespan App, Data Entries of the Data App may summarize for instance the relevance of each factor class (e.g. homologous group; chemical derivate of related structure and properties, etc.) as well as draw overall conclusions. o

prometheus--2.jpg

  • symbol name observation species
    YMR018W Deletion of YMR018W increases replicative lifespan by 35% in the alpha strain [18340043]. Budding yeast
    OSH6 OxySterol binding protein Homolog 6 Elevation of OSH6 levels by an ERG6 promoter extends mean, median and maximum replicative lifespan by 39, 52 and 18% which is non-additive with 0.5% glucose restriction. It also extends the lifespan of NYV1 mutant [Geber et al., unpublished]. The long lifespan of Perg6-OSH6 is not further extended by deletion of TOR1 [22622083]. OSH6 overexpression decreases total cellular sterol content and reduces Lst8 protein levels. The CC domain of Osh6 is dispensable for longevity. Deletion of the CC domain leads Osh6 to the late endosome. [Fusheng Tang, personal communication]. OSH6 deletion does not affect lifespan under normal conditions, but it abrogates the lifespan extension by 0.5% glucose restriction [Xia et al. unpublished]. Perg6-OSH6 osh5 double mutant have a lifespan significantly shorter than that of Perg6-OSH6 [Xia et al. upublished]. Budding yeast
    INS insulin Expression of human insulin under an inducible heat shock promoter increases nematode lifespan by 25% and is also able to enhance the lifespan of daf-2 mutants [11274053]. INS was found to be associated with longevity [22406557; 19367319; 17989723; 19489743]. Human
    SRX1 SulfiRedoXin 1 Extra copy of SRX1 counteracts age-related hyperoxidation of Tsa1 and extends replicative lifespan by 15 - 20% in a TSA1-dependent manner. Replicative lifespan extension in sir2;fob1 double mutant by DR is reduced by SRX1 deletion. Wild-type cells require SRX1 to fully extend lifespan. DR fails to further extend replicative lifespan of cells carrying an extra copy of SRX1. Mutation in CDC35 (adenylate cyclase), a genetic mimetic of DR, is dependent on SRX1 to extend replicative lifespan [21884982]. Budding yeast
    faah-1 Fatty Acid Amide Hydrolase 1 faah-1 overexpression reduces eicosapentaenoyl ethanolamide (EPEA), palmitoleyol ethanolamide, linoleyol ethanolamide, as well as arachidonoyl ethanolamide (AEA) levels, delays development, increases thermal stress resistance, and was associated with mean and maximum adult lifespan extension by 19 and 35%, respectively, in presence of abundant food but not under (two different protocols of) DR. Overexpression in pharynx was largely sufficient for this lifespan extension [21562563]. Nematode
    foxo Forkhead box, sub-group O foxo overexpression extends lifespan. Activation of foxo in the adult pericerbral fat body is sufficient for lifespan extension [15175753]. Overexpression of foxo in the adult adipose tissue alone prolongs lifespan [15192154; 15175753]. Limited activation of foxo reduces the expression of Drosophila insulin-like peptide dilp-2 synthesized in neurons and, represses endogenous insulin-dependent signaling in peripheral fat body [15175753]. foxo is not required for DR, but its activity modulates the response. foxo null mutants are highly and significantly shorter-lived than wild-type on all food dilutions apart from 0.1 SY and under starvation. foxo null mutants are not more sensitive to starvation than wild-type. foxo overexpression in adult fat body under normal nutritional conditions leads to extension of lifespan of females and causes a right shift of the response curve of lifespan to DR [18241326]. Overexpression of dFOXO in adult fat body increases median, by 21-33%, and maximum lifespan as well as lowers the age-specific mortality at all ages, in two independent experiments. Overexpression of dFOXO increases lifespan by lowering the whole mortality trajectory, with no effect on slope (similar to DR). Initiation of dFOXO expression at different ages increases subsequent lifespan with the magnitude of increase decreasing as the animals were put on RU486 (which activates the foxo transgene via UAS) at older ages. The effects of removal of dFOXO overexpression at different ages closely mirrored those of induction of expression and produce shortest lifespan observed in animals taken of RU486 at the earlier ages [17465980]. Fruit fly
    Gadd45 growth arrest and DNA damage-inducible gene 45 Gadd45 overexpression in the nervous system leads to a significant increase of lifespan without a decrease in fecundity and locomotor activity. The lifespan extension effect is more pronounced in males than in females. Additional maximum lifespan is also extended. The maximum lifespan is increased by 50% and 59% for females and males, respectively. The median lifespan is extended by 46 and 77% for females and males, respectively [22661237]. Fruit fly
    Ghr Growth hormone receptor Ghr knockouts (the so called Laron mice) are dwarfs with significantly extended lifespan by 40-50% [12933651]. Ghr-/- mice are significantly longer lived as Ghr+/+ or Ghr+/- mice (by 40-50%) in both females and males [10875265; 19370397]. 30% DR fails to affect overall survival, average or median long-lifespan of Growth hormone receptor knockout (GHRKO) mice and increased maximal lifespan only in females. Insulin sensitivity in GHRKO mutants is greater than in wild-type and is not further increased by DR [16682650]. Intermittent fasting also fails to extend the long lifespan of GHRKO mice [19747233]. Lifespan of mice with a deletion in the Ghr gene live almost 5 years [21123740]. In C57BL/6J this mutation increases life expectancy by 16 to 26% depending on gender [12933651] and in mice of mixed genetic background the increases amounted to 36-55% [9371826]. Serum levels of GH are elevated in mutant mice [9371826] and mutants are smaller than wild-type. IGF-1 and IGFBP-3 levels are also reduced in Ghr mutant mice [10875265]. The age-associated decline in memory retention is delayed in Ghr mutants [11336996]. Overexpression of a growth hormone antagonist (a mutated growth hormone that competes with the endogenous one) has no effect on lifespan [12933651]. House mouse
    GstS1 Glutathione S transferase S1 GstS1 overexpression increases the mean lifespan by 33% [18059160]. Fruit fly
    Nudt1 nudix (nucleoside diphosphate linked moiety X)-type motif 1 hMTH1-Tg mice express high levels of the hMTH1 hydrolase that degrades 8-oxoGTP and 8-oxoGTP and excludess 8-oxoguanine from both DNA and RNA. hMTH1-overexpresing mice have significantly lower steady-state levels of 8-oxoguanine in both nuclear and mitochondrial DNA of several organs, including the brain. hMTH1 overexpression prevents the age-dependent accumulation of DNA 8-oxoguanine that occurs in the wild-type mice. These lower levels of oxidized guanines are associated with increased longevity and hMTH1-Tg animals live significantly longer than their wild-type littermates [23648059]. House mouse
    hsb-1 Heat Shock factor Binding protein hsb-1(cg116) mutation at 20 degree Celsius extends mean, 75%ile, and maximum lifespan by 57-60%, 52-59%, and 37-69%. Nematode
    HST2 Homolog of SIR Two (SIR2) 2 HST2 overexpression extends replicative lifespan. 0.5% glucose restriction does not increase lifespan of sir2;fob1;hst2 triple mutants [16051752]. DR increases lifespan of all four sir2;fob1;hstX(X = sirtuin) triple mutants [16741098; 17129213]. Budding yeast
    ins-1 INSulin related Increased dosage of ins-1 under its own promoter as well as a heat shock promoter increases lifespan by 25% and is also able to increase the lifespan of daf-2 mutants [11274053]. ins-1 RNAi increases lifespan by 20%. ins-1 is differentially transcribed in daf-16 and daf-2 animals [12845331]. Overexpression of ins-1 also causes an increase in dauer formation and can enhance the dauer formation of daf-2 mutants [11274053]. Nematode
    NPT1 Nicotinate PhosphoribosylTransferase 1 Increased dosage of NPT1 increases SIR2-dependent silencing, stabilizes the rDNA locus and extends replicative lifespan by up to 60%. 0.5% glucose restriction does not significantly further increase replicative lifespan of NPT1 overexpression [11884393]. NPT1 deletion decreases replicative lifespan by 50% [17482543] as well as chronological lifespan [17110466]. Deletion of NPT1 shortens the lifespan in W303R. Replicative lifespan extension of cdc25-10 mutation (assumed to act as a genetic DR-mimetic) is cancelled out by NPT1 deletion [11000115]. NPT1 mutation results in loss of telomere and rDNA silencing [10841563], an effect that is likely caused by a loss of SIR2 activty due to decreased NAD levels. Mutation of NPT1 is synthetical lethal with mutation of QPT1 [11000115]. Budding yeast
    Pten Increased Pten and 4E-BP activity in muscles is extends the lifespan [21111239]. Fruit fly
    Pten phosphatase and tensin homolog Increasing gene dosage via homogeneous and moderate overexpression, while retaining its normal pattern of tissue expression of Pten increases mean, median and maximum lifespan in both females and males. Mean lifespan is extended by 18% (males), 11% (females) and 14% (both). Median lifespan in males, females and both increases by 12%, 16% and 12%, respectively [22405073]. Transgenic Pten mice carrying the additional genomic copies of Pten are protected from cancer and present a significant extension of lifespan that is independent of their lower cancer incidence. Pten(g) mice have an increased energy expenditure and protection from metabolic pathologies [22405073]. PTEN promotes oxidative phosphorylation and decreases glycolysis. PTEN aslo upregulates UCP1 expression in brown adipocytes, which enhances their nutrient burning capacity and decreases adiposity and associated pathologies [23245767] House mouse
    SAG12 Introduction of a SAG12 via bacterial gene transfer (pSAG12:ipt) increases longevity. The gene results in enhanced production of the hormone Cytokinin which affects growth and development as well as stimulates cell division and thereby extends the lifespan. pSAG::ipt transgenic plants exhibit delayed leaf senescence, increased branching and reduced internodal length. The leaves and flowers of the pSAG12:ipt plants are reduced in size and display a more intense coloration [http://www.wissenschaft.de/wissenschaft/news/316062.html; http://www.biomedcentral.com/1471-2229/12/156/abstract; Garcia-Sogo et al. 2012].
    Irs2 insulin receptor substrate 2 Irs2 brain-specific knockout mice were overweight, hyperinsulinemic, glucose intolerant, yet more active and lived up to 18% longer. House mouse
    Kl Klotho Klotho disruption results in infertility and signs of premature ageing such as a short lifespan, arteriosclerosis, skin atrophy, osteoporosis, and emphysema. Klotho overexpression leads to lifespan extension [9363890]. Klotho is highly expressed in brain and kidney [10631108]. The circulating form of Klotho binds to a cell-surface receptor and represses intracellular signals of insulin and IGF1. Perturbing insulin and IGF1 alleviates the aging-like phenotypes in Klotho-deficient mice [16123266]. kl/kl mice initially develop normally but exhibit growth retardation starting at 3-4 weeks of age. Their average lifespan is 61 days (none more than 100 days). These mice gradually become inactive, with reduced stride length, atrophic genital organs, thymus atrophy, arteriosclerosis (medial calcification and intimal thickening), ectopic calcification in arterial walls, osteroposis, skin atrophy, impaired maturation of gonadal cells, emphysema, reduced growth hormone-producing cells in the pituitary gland, slight hypercalcemia, and hyperphosphatemia [9363890]. kl/kl mice have decreased insulin production and increased insulin sensitivity [11016890]. House mouse
    cst-1 Caenorhabditis STE20-like kinase 1 Knockdown of cst-1 shortens lifespan and accelerates tissue aging while its overexpression extends lifespan and delays aging in a daf-16-dependent manner [16751106]. Nematode
    Akh Adipokinetic hormone Knockdown of the adipokinetic hormone (Akh) by RNAi (with an RU486-inducible and ubiquitously expressing Actin 5C-GS Gal4 strain) does not by itself affect lifespan, but significantly inhibits DR-dependent increase in lifespan across a range of yeast concentrations in both females and males. While control females and males exhibit a 113%/22% increase in lifespan under DR, upon Akh inhibition there was a significant reduction in lifespan extension with DR (52%/5%). Global Akh knockdown reduces starvation resistance by 24% upon DR, but no significant change upon AL. Also Akh RNAi repressed the DR-dependent increase in cold-stress resistance. Fat body and neuronal-specific inhibition of Akh by using RU486-inducible S(1)106-GS-Gal4 and Elav-GS-Gal4 enhancer traps, respectively, does not reduce lifespan extension upon DR. But, muscle-specific inhibition of Akh using RU486-inducible muscle enhancer trap (Mhc-GS-Gal4) reduces the DR-dependent increase in lifespan. While control exhibit a 47.2% lifespan extension, animals with muscle-specific Akh inhibition fails to result in any increase upon DR (i.e. completely blocked the DR lifespan extension). Muscle-specific Akh inhibition diminishes the increase in triglyceride synthesis and breakdown present normally under DR. A significant reduction in lifespan extension also occurs with a noninducible muscle driver (Mhc-Gal4). Controls on DR exhibit significant higher levels of spontaneous activity compared to Akh RNAi-inhibited animals at all ages. Akh inhibition reduces the protective effect of DR on age-related decline in muscle function/activity [22768842]. Fat-body specific Akh RNAi results in increased spontaneous activity and a small but significant increase in lifespan upon AL [22768842]. Overexpression of Akh in a ubiquitousness manner enhances fat metabolism (significant increase in triglyceride synthesis and breakdown under AL), spontaneous activity (148% on AL and 154% on DR), and lifespan on AL (33%). However, despite and increase in movement under DR, lifespan is not increased under a restricted diet [22768842]. Fruit fly
    ttll-9 Tubulin Tyrosine Ligase Like Knockdown of ttll-9 throughout the entire life increases the lifespan by 3% [23698443]. Nematode
    LAT1 LAT1 is suggested to play a role in lifespan extension of DR. Deleting LAT1 abolishes replicative lifespan extension induced by 0.5% and 0.05% glucose restriction. In contrast, overexpressing Lat1 extends replicative lifespan, and this lifespan extension was not further increased by 0.5% glucose restriction. Similar to DR, replicative lifespan extension by LAT1 overexpression largely requires mitochondrial respiration [17200108]. Overexpressing LAT1 extends lifespan (20% mean lifespan increase) and this lifespan extension is not further increased by DR. Similar to DR, lifespan extension by Lat1 overexpression largely requires mitochondrial respiration indicating mitochondrial metabolism plays an important role in DR. Interestingly, LAT1 overexpression does not require the Sir2 family to extend lifespan. Lat1 is also a limiting longevity factor in non-dividing cells in that overexpressing LAT1 extends cell survival during prolonged culture at stationary phase. Budding yeast
    ImpL2 Ecdysone-inducible gene L2 Lmp-L2 over-expression, ubiquitous or restricted to DILP-producing cells and/or gut and fat body, extends lifespan even if induced at adult onset [21108726]. Overexpression of ImpL2 increases mean and maximum lifespan by 15% and 23%, respectively. Lifespan is reduced when Impl2 is strongly over-expressed throughout the adult by the conditional GS driver, act-GS-GAL4 or da-GS-Gal3, while restricted over-expression of the ImpL2 in fat cells by using S106-GS-Gal4, which increases mRNA level about 6-fold extends lifespan in both sexes [22366109]. mRNA for Impl2 was strongly elevated in sterile, long-lived flies [18434551]. Fruit fly
    mir-71 Loss and gain-of-function of mir-71 decreases and increases lifespan, respectively [21129974]. mir-71 mutants have a reduced lifespan with 40% decrease in mean lifespan, while extra copies of mir-71 extend the lifespan with an increase in lifespan by 15 - 25% [22482727], Loss of mir-71 function suppresses the long lifespan of glp-1(e2141) mutants [22482727], During adulthood mir-71 is strongly expressed in the intestine, body wall muscles and neurons. mir-71 is upregulated in aging adults [22482727], Nematode
    Factors are an extension of GenAge and GenDR.

    Comment on This Data Unit