Factors

We need to know every factor which determines lifespan.

Lifespan factors often but not always originate from defined genetic elements. They are not just genes, by definition they can be anything for which a Classifications schema can be build for that is related to the regulation of lifespan, such entities may include Single-Nucleotide Polymorphism, transcript variants, proteins and their complexes, compounds (i.e. small molecules like metabolites and drugs), etc. A factor should be based on a defined molecular entity or genomic position and been classified. It shall be highly flexible and scalable Concept.

While individual lifespan factors within each species or precise defined molecular entities will be captured within the Lifespan App, Data Entries of the Data App may summarize for instance the relevance of each factor class (e.g. homologous group; chemical derivate of related structure and properties, etc.) as well as draw overall conclusions. o

prometheus--2.jpg

  • Types: + -
    Gene (2)  
  • symbol name observation species
    YNR066C Deletion of YNR066C decrease replicative lifespan by 50% in the alpha strain [19030232]. Budding yeast
    YPR011C Deletion of YPR011V decreases replicative lifespan by 20% in the a strain [18340043]. Budding yeast
    YSC84 Deletion of YSC84 increases replicative lifespan by 20% in the alpha strain [19030232]. YSC84 deletion increases replicative lifespan by 25% in the alpha strain [18340043]. Budding yeast
    RPS6B RPS6B deletion increases mean replicative lifespan by about 30% [16293764]. Deletion of RPS6B, but not of the RPS6A paralog increases replicative median lifespan robustly by 45% [17174052]. Budding yeast
    SUN4 Disruption of SUN4 shortens mean (87.5% of normal), but not maximum, replicative lifespan in BKY1-14c [Austriaco, N.R. (1996) “UTH1 and the Genetic Control of Aging in the Yeast, Saccharomyces cerevisiae.” Ph.D. Thesis, Massachusetts Institute of Technology; 8810036] SUN4 mutation causes failure of daughter cells to completely detach and results in a multi-budded morphology [10683261]. Budding yeast
    SCH9 Transposon-mediated mutagenesis of SCH9, which encodes for a serine threonine kinase homologous to Akt/PKB, increases resistance to oxidants and thermal stress as well as extends chronological lifespan by 30%. SCH9 deletion increases chronological lifespan by up to threefold. Stress-resistance transcription factors Msn2/Msn4 and protein kinase Rim15 are required for this life-extension. Deletion of the mitochondrial antioxidant enzyme superoxide dismutase gene SOD2 prevents the increased chronological lifespan caused by SCH9 deletion [11292860]. Mutations that decrease the activity of the Ras/Cyr1/PKA pathway also extend longevity and increase stress resistance by activating transcription factors Msn2/Msn4 and Sod2 [12855292]. SCH9 deletion mutants exhibit more than 3-fold extension of chronological lifespan. By day 9 of medium depletion all the wild-type cells were dead while 50% sch9 mutants survived [17710147]. Deletion of SCH9 also increases resistance to heat shock and oxidative stress [11292860], and increases replicative lifespan by 18% (in DBY746) [12586694]. SCH9 deletion increases the replicative lifespan by 40% in the alpha strain [18340043] and increases mean chronological lifespan by 97 - 246% (97, 133, 154, 226, 246) in diploid cells [21447998]. Mutation or deletion of SCH9 increases resistance to oxidants and extends chronological lifespan [11292860; 16286010]. The extended lifespan of SCH9 deletion mutants is not further extended by low glucose DR and is independent of Sir2 [16293764]. Deletion of RIM15 or GIS1 reverses chronological lifespan extension associated with sch9Delta. Water restriction further increases chronological lifespan of sch9Delta [18225956]. Deletion of SCH9 results in a longer chronological lifespan [21076178]. Budding yeast
    SWH1 SWH1 (alias OSH1) deletion mutants have an extended replicative lifespan (p=0.02) and DR does not increase the long lifespan of SWH1 deletion mutants [Xia et al. unpublished]. Budding yeast
    IRC14 Deletion of IRC14 increases mean replicative lifespan by 14-22% [16293764]. IRC14 is a dubious ORF overlapping IDH2. Budding yeast
    CYT2 Mutation of CYT2 decreases replicative lifespan by 25% in the alpha strain [18340043; 19030232]. Budding yeast
    ESA1 esa1-531 mutant has an even shorter chronological lifespan than PKA1 deletion mutant in both 2% glucose (ad libitum) and water (extreme DR) at 30 degree Celsius, a semipermissive temperature. At the permissive temperature (25 degree Celsius) there is little difference [19303850]. Budding yeast
    YDR417C Deletion of YDR417C increased chronological lifespan [20657825]. Budding yeast
    RCK2 Deletion of RCK2 increases mean chronological lifespan by 14 - 33% (14, 19, 33) in diploid cells [21447998]. Budding yeast
    YDL041W Deletion of YDL041W increases chronological lifespan by 19 - 29% (19, 19, 27, 29) in diploid cells [21447998]. Budding yeast
    TLC1 Overexpression of a truncated allele of TLC1 abrogates telomere silencing [7545955], shortened telomeres and extends replicative lifespan approximately by 20% [9275199]. Deletion of TLC1 might decrease replicative lifespan [Nugent et al., 1996]. Budding yeast
    MEP2 Deletion of MEP2 extends chronological lifespan [16418483]. Budding yeast
    MEP3 Deletion of MEP3 extends chronological lifespan [16418483]. Budding yeast
    VPS25 Under starvation conditions VPS25 deletion mutations have dramatically reduced lifespan [20953148]. Budding yeast
    VPS27 Under starvation conditions VPS27 deletion mutants have a dramatically reduced lifespan [20953148]. Budding yeast
    MPT5 Overexpression of MPT5 from the ADH promoter extends replicative lifespan by about 20% in W303R [11805047] and by 25% in PSY142 [9150138], whereas the deletion of MPT5 shortens lifespan by about 50% [9150138; 7859289]. MPT5 deletion decreases average chronological lifespan by 50%, which is rescued to the wild-type level by PKC1 overexpression [17172436]. MPT5 mutants are temperature sensitive [7845352], hypersensitive to mating pheromone [9154842], and null mutants exhibit increased silencing at telomeres and decreased rDNA silencing [9584615]. Deletion of MPT5 is synthetical lethal with mutation of either SWI4, SWI6, or CCR4 in an ssd1-d background [11805047]. MPT5 overexpression suppresses the temperature phenotype of POP2 mutant [9504907]. MPT5 is required for relocalization of the SIR complex to the nucleolus in sir4-42 strain [7859289]. Budding yeast
    ATG18 The replicative lifespan of ATG18 deletion mutant is not shorter than that of wild-type under DR [18690010]. Budding yeast
    YDL180W YDL180W deletion impairs DR-mediated replicative lifespan extension, but does not change lifespan on AL significantly [22912585]. Budding yeast
    LAT1 LAT1 is suggested to play a role in lifespan extension of DR. Deleting LAT1 abolishes replicative lifespan extension induced by 0.5% and 0.05% glucose restriction. In contrast, overexpressing Lat1 extends replicative lifespan, and this lifespan extension was not further increased by 0.5% glucose restriction. Similar to DR, replicative lifespan extension by LAT1 overexpression largely requires mitochondrial respiration [17200108]. Overexpressing LAT1 extends lifespan (20% mean lifespan increase) and this lifespan extension is not further increased by DR. Similar to DR, lifespan extension by Lat1 overexpression largely requires mitochondrial respiration indicating mitochondrial metabolism plays an important role in DR. Interestingly, LAT1 overexpression does not require the Sir2 family to extend lifespan. Lat1 is also a limiting longevity factor in non-dividing cells in that overexpressing LAT1 extends cell survival during prolonged culture at stationary phase. Budding yeast
    YMR226C Replicative lifespan of TMA29 mutants increases by 35% in the alpha strain and decreases by 10% in the a strain [18340043]. Budding yeast
    YOL092W Deletion of YOL092W decreases mean and maximum replicative lifespan by 36 and 21%, respectively. Lifespan of YOL092Y deletion mutants is extended by 0.5% glucose restriction [22912585]. Budding yeast
    MIR1 Deletion of MIR1 increases replicative lifespan by 25% in the alpha strain [18340043] and mean chronological lifespan by 43 - 100% (43, 49, 59, 73, 69, 100) in diploid cells [21447998]. Budding yeast
    Factors are an extension of GenAge and GenDR.

    Comment on This Data Unit