Factors

We need to know every factor which determines lifespan.

Lifespan factors often but not always originate from defined genetic elements. They are not just genes, by definition they can be anything for which a Classifications schema can be build for that is related to the regulation of lifespan, such entities may include Single-Nucleotide Polymorphism, transcript variants, proteins and their complexes, compounds (i.e. small molecules like metabolites and drugs), etc. A factor should be based on a defined molecular entity or genomic position and been classified. It shall be highly flexible and scalable Concept.

While individual lifespan factors within each species or precise defined molecular entities will be captured within the Lifespan App, Data Entries of the Data App may summarize for instance the relevance of each factor class (e.g. homologous group; chemical derivate of related structure and properties, etc.) as well as draw overall conclusions. o

prometheus--2.jpg

  • symbol name observation species
    mir-124 Loss of mir-124 increases reactive oxygen species formation and accumulation of the aging marker lipofuscin, reduces whole body ATP levels and results in reduction in lifespan [23075628]. Supplementation of vitamin C normalizes the reduced median lifespan of mir-124 mutants [23075628]. The expression of the conserved mir-124 in whole wrn-1 mutants (which premature age) is significantly reduced [23075628]. Nematode
    mir-58 mir-58(n4640) mutation decreases the mean lifespan by 20% [22482727]. Nematode
    mir-246 Mutating mir-246 decreases mean and maximum lifespan by 12%, while its overexpression increases mean and maximum lifespan by 6 and 5 - 14%, respectively [21129974]. Nematode
    mir-238 Mutating mir-238 decreases mean and maximum lifespan by 18 and 24% [21129974]. mir-238(n4112) mutation decreases mean lifespan by 20% [22482727]. Nematode
    mir-71 Loss and gain-of-function of mir-71 decreases and increases lifespan, respectively [21129974]. mir-71 mutants have a reduced lifespan with 40% decrease in mean lifespan, while extra copies of mir-71 extend the lifespan with an increase in lifespan by 15 - 25% [22482727], Loss of mir-71 function suppresses the long lifespan of glp-1(e2141) mutants [22482727], During adulthood mir-71 is strongly expressed in the intestine, body wall muscles and neurons. mir-71 is upregulated in aging adults [22482727], Nematode
    p53 Overexpression of wild-type p53 during adult life has no significant effect on lifespan. Expression of dominant-negative versions of p53 in adult neurons extends lifespan by 58% in females and by 32% in males and increases resistance to genotoxic stress and resistance to oxidative stress, but not to starvation or heat stress, while not affecting egg production or physical activity. Dominant negative p53 expression cancels out lifespan extension effect of DR, low calorie-food (5% SY). Muscle or fat body specific expression of a dominant negative form of p53 as well as globally lack of p53 decreases lifespan [16303568]. Loss of p53 activity slightly shortens the lifespan. Mutants that lack p53 survive well up to 50 days, but mortality rate increases relative to wild-type at later ages. p53 mutant animals are extremely sensitive to irradiation [12935877]. Expression of dominant-negative (DN) form of p53 in adult neurons, but not in muscle or fat body cells, extends median lifespan by 19% and maximum lifespan by 8%. The lifespan of dietary-restricted flies is not further extended by simultaneously expressing DN-DMp53 in the nervous system, indicating that a decrease in Dmp53 activity may be part of the DR lifespan-extending effect. Selective expression of DN-Dmp53 in only the 14 insulin-producing cell (IPCs) in the brain extends lifespan to the same extent as expression in all neurons and this lifespan extension is not additive with DR [17686972]. Fruit fly
    Sir2 Overexpression of Sir2 (alias dSir2) extends lifespan by up to 57% and specifically median lifespan by 40-60%, whereas a decrease in Sir2 activity by mutation blocks the life-extending effect of caloric reduction or rpd3 mutations [15520384]. rpd3 mutants fed normal food and wild-type fed a low-calorie diet increase dSir2 expression two-fold [12459580]. Sir2 mutation does not reduce lifespan under AL. Ubiquitous Sir2 overexpression causes a 4-fold increase in Sir2 mRNA expression and an up to 57% increase in average lifespan (29% for females and 18% for males). A 10 - 20% increase in Sir2 mRNA levels causes no lifespan extension. High levels of Sir2 protein is found in nuclei of neurons and in nuclei and cytoplasm of fat body cells. Neuronal Sir2 overexpression extends average lifespan by 52% in females and 20% in males. Motor-neuronal specific expression fails to cause lifespan extension. Flies with no or with several decreased Sir2 gene function have no lifespan extension under DR. DR fails to cause further increase in lifespan or even reduces lifespan toward normal of Sir2 overexpression mutants. Mild Sir2 overexpression in the fat-body extends lifespan and reduces relative body fat content in both males and females [22661237]. Sir2 in the adult fat body regulates longevity in a diet-depending manner. A diet-dependent lifespan phenotype of Sir2 perturbations (both knockdown and overexpression) in the fat-body, but not in muscles, negates the effects of background genetic mutants. Sir2 knockdown abrogates fat-body dFoxo-dependent lifespan extension [23246004]. Decreased expression of Sir2 and Sir2-like genes in all cells causes lethality during development. Suppression of the Sir2 in neurons decreases the median lifespan by 10-30%, while ubiquitinous silinecing of the Sir2-like genes shortens lifespan. The effects are server at 28°C that at 25°C [17159295]. Fruit fly
    Sirt2 Decreased expression of Sirt2 by RNA interference causes lethality during development. Silencing in neurons shortened mean lifespan by 20% [17159295]. Fruit fly
    Sirt6 Decreased expression of Sirt6 by RNA interference causes lethality during development. Sirt6 silencing in neurons shortens mean lifespan by 20% [17159295]. Fruit fly
    Aut1 Aut1 depletion form the first day of imaginal stage shortens lifespan by 28% on average in Drosophila and causes morphological behavioural features of premature aging [18219227]. Fruit fly
    hebe Adult-specific overexpression of hebe increases the lifespan by 5-30% and modulates late-age female fecundity. Female and male mean lifespan is up to 11% and 24% higher [19011900]. Fruit fly
    CG3776 Both overexpression and underexpression of CG3776 (alias Jhebp29) reduces the mean lifespan, where the reduction in males is slightly higher. The lifespan of male flies with under- and overexpressed CG3776 is reduced by 38.8 and 42.6%, respectively when compared with Oregon R flies.The lifespan of female flies with under- and overexpressed CG3776 is reduced by 31.6 and 35%, respectively when compared to Oregon R flies. Among the males and females, relatively to Oregon R and EP835/CyO, the age-specific survival of EP835/EP835 and EP835/Gal4 is reduced in both log-rank and Wilcoxon tests (P < 0.001); survival of EP835/EP835 and EP835/Gal4 differed using the log-rank-test (male: P<0.001; female: P=0.027) [18275960]. Fruit fly
    kermit The disruption of kermit (alias dGIPC) function results in premature loss of locomotor activity and reduced mean lifespan [21029723]. Fruit fly
    magu Adult-specific overexpression of magu increases lifespan by 5-30% and modulates late-age fecundity [19011900]. Fruit fly
    Pten Increased Pten and 4E-BP activity in muscles is extends the lifespan [21111239]. Fruit fly
    Thor Null mutation in Thor (alias d4E-BP) causes a significant decrease in longevity (-25% median lifespan in males). Thor is strongly upregulated during starvation. foxo and Thor null mutants are compromised in stress resistant. Stress resistance of foxo null mutants is rescued by Thor overexpression [16055649]. Thor is upregulated on the protein level in a foxo-independent manner upon DR, while it is transcriptional induced in a foxo-dependent fashion by starvation. Thor null mutants cancel out DR-induced lifespan extension, because mutants exhibit a diminished change in lifespan when nutrient conditions were varied. Ubiquitously expression of Thor rescued DR response in females and males. Thor null mutants have a wild-type similar reduction in egg production upon DR. Ubiquitously overexpression of wild-type Thor causes no change under AL, but an activated allele (with more than 3-fold increased binding activity to delF4E) significantly extends lifespan of females (weak allele) and females as well as males (strong allele). Mean lifespan is extended by 11 to 40%. Median lifespan of males and females is enhanced by by 11 and 22%, respectively. Maximum lifespan is extended by 16 and 18% for males and females, respectively. Under DR (0.25% YE) there is no lifespan extension, beyond the effect of DR alone, in all (wild-type, weak and strong) Thor alleles [19804760]. Lifespan of animals with increased Pten and 4E-BP activity in muscle exhibit and extended mean and maximum lifespan by 20% and 15.8% [21111239]. Fruit fly
    yata yata mutation shortens the maximum lifespan by 68% and results in progressive deterioration of the nervous tissues and aberrant accumulation of Sec23 [19209226]. Fruit fly
    Spargel Tissue-specific overexpression of dPGC-1 in stem and progenitor cells within the digestive tract of females flies extends the mean and maximum lifespan of females by up to 33% and 37%. Those mutants display a delay in the onset of aging-related changes in the intestine, leading to improved tissue homoeostasis in old flies [22055505]. Fruit fly
    mir-277 Constitutive miR-277 expression shortens lifespan and synthetically lethal with reduced insulin signaling, indicating that metabolic control underlies this phenotype. Transgenic inhibition with a miRNA sponge construct also shortens lifespan [23669073]. miR-277 is downregulated during adult life [23669073]. mir-277 controls branched-chain amino acid catabolism and as a result it can modulate the activity of TOR kinase [23669073]. Fruit fly
    lin-4 abnormal cell LINeage 4 A loss-of-function mutation in lin-4 shortens lifespan and accelerated tissue ageing while overexpressing lin-4 extends lifespan by redarding aging [16373574]. lin-4 is regulated by DAF-16 in L1 arrest. Nematode
    Atg2 Autophagy-specific gene 2 Atg2 overexpression increases average female lifespan by 28% [18059160]. Fruit fly
    bam bag of marbles Bam mutants have an extended lifespan due to germ cell loss. Lifespan of females is on average up to 50% higher and that of males on average s up to 27.8% higher [18434551]. Fruit fly
    Pka-C1 cAMP-dependent protein kinase 1 PKA-overexpressing flies (hsPKA*/+) have an about 30% extended maximum lifespan [17369827]. Fruit fly
    Akt1 CG4006 gene product from transcript CG4006-RA RNA interference of Akt1 in intestinal stem cells, results in impaired regeneration of the intestinal epithelium and a short lifespan. In males and females on mean lifespan is 11.4% and 7.4% lower [20976250]. Fruit fly
    Dys Dystroglycan Loss of dys function in the heart leads to an age-dependent disruption of the myofibrillar organization within the myocardium as well as to alterations in cardiac performance. dys RNAi-mediated knockdown in the mesoderm also shortens lifespan. Mesodermal dys knockout results in a morderate maximum lifespan reduction (13%), but not when exclusively targeted to the heart. In contrast, half of the transheteozygous DysExel618/Dyskx43 deficiency flies die at 29 days compared to 63 days in controls. This indicates that a moderate dye loss-of-function in all muscles, but not in just the heart, reduces the normal lifespan [18221418]. Fruit fly
    • Page 1 of 3
    • 25 of 71 factors
    Factors are an extension of GenAge and GenDR.

    Comment on This Data Unit