Factors

We need to know every factor which determines lifespan.

Lifespan factors often but not always originate from defined genetic elements. They are not just genes, by definition they can be anything for which a Classifications schema can be build for that is related to the regulation of lifespan, such entities may include Single-Nucleotide Polymorphism, transcript variants, proteins and their complexes, compounds (i.e. small molecules like metabolites and drugs), etc. A factor should be based on a defined molecular entity or genomic position and been classified. It shall be highly flexible and scalable Concept.

While individual lifespan factors within each species or precise defined molecular entities will be captured within the Lifespan App, Data Entries of the Data App may summarize for instance the relevance of each factor class (e.g. homologous group; chemical derivate of related structure and properties, etc.) as well as draw overall conclusions. o

prometheus--2.jpg

  • symbol name observation species
    sir-2.1 Yeast SIR related 1 sir-2.1 deletion slightly reduces lifespan of wild-type [16860373]. sir-2.1 overexpression extends lifespan by about 50% and this lifespan extension depends on DAF-16 activity as it is suppressed by mutation in daf-16 and it does not synergize with daf-2 [11242085]. sir-2.1 suppresses longevity of unc-13 and eat-2, but not daf-2 or unc-64 mutants. sir-2.1 is therefore partially required for lifespan extension from mutation of eat-2 [16860373], but is completely independent for lifespan extension from DR using a reduced feeding protocol [Kaeberlein et al. in press]. sDR increases lifespan of wild-type and sir-2.1 mutants to the same extent [19239417]. Overrexpression of sir-2.1 synergizes with TGF-beta mutation (daf-4 and daf-1) for dauer formation [11242085]. Nematode
    wwp-1 WW domain Protein (E3 ubiquitin ligase) 1 RNA interference of wwp-1 decreases median lifespan by 9% in wild-type animals and 24% in daf-2 mutants [18006689]. Loss of wwp-1 function by RNAi or mutation reduces lifespan at 25 degree Celsius, but not 20 degree Celsius. wwp-1 overexpression extends lifespan by up to 20%. Reduced levels of wwp-1 completely suppress the extended longevity of eat-2 mutants. Lifespan of wwp-1 mutants across entire food concentration range by bacterial dilution in liquid culture or on solid plates does not noticeable change. There is no difference in wwp-1 mRNA levels under AL and DR. RNAi reduction of pha-4, but not of daf-16 suppresses increased longevity by wwp-1 overexpression. Mutations in iron sulphur component of complex III, isp-1, increases longevity by reducing mitochondrial function. wwp-1 RNAi does not suppress the extended lifespan of isp-1 mutants and has only minor suppressive effects on lifespan of another mitochondrial mutant, clk-1, and in cyc-1 RNAi treated worms. RNAi depletion of wwp-1 has no effect on long lifespan of daf-2 mutants [19553937]. Nematode
    trx-1 ThioRedoXin 1 Thioredoxins regulate many cellular redox processes. trx-1 is mainly associated with neurons and is expressed in ASJ ciliated sensory neurons and to some extent also on the posterior-most internal cells. trx-1 reduces protein disulfides in the presence of a heterologous thioredoxin reductase. trx-1 null mutant display reduced mean and maximum lifespan [16387300]. Mutants with a deletion in the trx-1 gene display a decrease in lifespan and are sensitive to oxidative stress [16324156]. trx-1 overexpression extends lifespan in wild-type but not in eat-2 mutants. trx-1 deletion completely suppresses the lifespan extension caused by eat-2 mutation, but only partially suppresses that by daf-2 or osm-5 mutations. Ectopic expression of trx-1 in ASJ neurons (but not in the intestine) in trx-1 mutants rescues the lifespan-extension conferred by eat-2 mutation. trx-1 overexpression extends lifespan of wild-type but not in eat-2 mutants. trx-1 deletion almost completely suppresses lifespan extension induced by dietary deprivation (DD). DD upregulates trx-1 expression in ASJ neurons. DR activates trx-1 in ASJ neurons which in turn triggers a trx-1-dependent non-cell autonomous mechanism to extend adult lifespan [21334311]. Nematode
    Sod2 Superoxide dismutase 2 (Mn) RNA interference of Sod2 results in increased oxidative stress and early-onset mortality in young adults [12456885]. Overexpression of Sod2 by 5-115% decreases lifespan by 4-5% without any compensatory changes in metablic rate, level of physical activity, or the levels of other antioxidants (Sod, Cat, and glutathione) [10545213]. Targeted overexpression of Sod2 in motor neurons alone extends lifespan by 30% [11113599]. Induced overexpression of Sod2 in adult animals extends lifespan up to 37% [12072463]. Overexpression of catalase in combination with SOD2 has no added benefit for lifespan [12072463]. Animals overexpressing SOD2 or catalase do not exhibit a decrease in metabolism as measured by oxgen consumption [12072463]. Sod2 overexpression results in a 20% increase in mean and maximum lifespan [18067683]. Fruit fly
    SOD2 SuperOxide Dismutase 2 SOD2 deletion decreases replicative lifespan by 72% [17460215]. SOD2 deletion decreases chronological lifespan [21076178]. Deletion of SOD2 decreases chronological lifespan in wild-type and abolishes chronological lifespan extension in sch9Delta mutants as well as decreases chronological lifespan in cyr1:mTn mutants [12586694]. Combined overexpression of SOD1 and SOD2 extends chronological lifespan by 30% in EG103 strain [12586694]. SOD2 deletion mutants are hypersensitive to oxygen and grow poorly in ethanol [10222047]. Budding yeast
    SOD1 SuperOxide Dismutase 1 The overexpression of Sods, mitochondrial Sod2 and cytosolic CuZnSod (Sod1), in combination delays the age-dependent reversible inactivation of mitochondrial aconitase, a superoxide-sensitive enzyme, and extends chronological lifespan by 30% [12586694]. Deletion of SOD1 decreases replicative lifespan by 40% [17460215]. Overexpression of SOD1 with CCS1 levuates the level of Cn, Zn-Sod activity and increased chronological lifespan. However overexpression of SOD1 without high cooper or simultonous overexpression of CCS1 shortened both chronological and replicative lifespan [15659212]. Overexpression of SOD1 has no effect on replicative lifespan [10224252]. Deletion of SOD1 shortens replicative lifespan by approximately 40%. The magnitude of the decrease in lifespan does not appear to dependent on oxygen concentration in the atmosphere [12020810]. Deletion of SOD1 shortens replicative lifespan [10547026]. Deletion of SOD1 shortens replicative as well as chronological lifespan [10222047]. Cells with a deletion of SOD1 exhibit a profound defect in entry into and survival during stationary phase (i.e. chronological lifespan) in the W303-B strain [8647826; 10222047], which is partially suppressed by expression of human Bcl-2 [9199172]. Hypersensitivity to oxygene and significantly decreased replicative lifespan of SOD1 deletion can be ameliorated by exogenous ascorbate. If acorbate's negative effects of auto-oxidation are prevented by exchange of medium, ascorbate prolongs mean and maximum replicative lifespan in the atmosphere of air and pure oxygene [15621721]. SOD1 deletion causes sensitivity to hyperoxia as well as methionine and lysine auxotrohies [9199172]. Budding yeast
    sptf-3 Specificity Protein Transcription Factor 3 RNAi against sptf-3 decreases mean and maximum lifespan by 20 - 28% and 28%, respectively. sptf-3 RNAi in the adulthood decreases the mean and maximum lifespan by 23 and 37% [23144747]. sptf-3 overexpression extends lifespan [18059442]. Nematode
    skn-1 SKiNhead 1 RNA interference of or mutations in skn-1 prevent the life-extension effects of dietary restriction [17538612]. skn-1 transgenes that overexpress a constitutive nuclear form of SKN-1 in the intestine extend the mean lifespan by 5-21%, independently of DAF-16 [18358814]. skn-1 mutation does not alter lifespan under AL, but cancels out the lifespan extension effect of lDR or food variation at all. Response to lDR in skn-1 mutant is restored by ectopic expression of skn-1 in ASI neurons and gut. Ectopic expression of skn-1b in ASI neurons rescued lDR longevity defects of skn-1. Ablation of ASI neurons completely suppresses the response to DR in wild-type or daf-16 mutants and cause a small increase in basal longevity of wild-type but not daf-16 mutants. lDR significantly increases SKN-1 expression in ASI neurons. lDR worms exhibit elevated respiration, which is absent in skn-1 mutants. skn-1 is necessary for increased respiration and the increase in respiration is necessary for lDR longevity effect, because two different inhibitors of mitochondrial electron transport chain complex III, myxothiazol and antimycin, suppress lDR longevity without shortening lifespan under AL. In contrast, the long life of a daf-2 mutant is not affected by antimycin. Some isoforms of SKN-1 are expressed from an operon downstream of bec-1. Beclin-1 mediates autophagy induced by nutrient deprivation. Therefore, skn-1 might be regulated by nutritional stress [17538612]. IF significantly extends lifespan of skn-1 mutants [19079239]. sDR extends lifespan of a skn-1 loss-of-function mutant (which displays a premature stop codon in all three isoforms) and wild-type to a similar extent [19239417]. skn-1(zu67) mutation decreases mean, median, and maximum lifespan by 11-23, 13-28 and 12-23%, respectively, and totally cancels out lifespan extension by ragc-1 RNAi [22560223]. Nematode
    SIR4 Silent information regulator 4 Deletion of SIR4 results in 20-25% reduction of lifespan [10521401]. SIR4 deletion mutants exhibit loss of silencing at the silent mating type loci [3297920] and telomeres [1913809] and have slightly elevated level of rDNA marker loss [10521401]. The short lifespan of a SIR4 mutant is probably due to the simultaneous expression of a and alpha mating-type information, which indirectly causes an increase in rDNA recombination and likely increases the production of extrachromosomal rDNA circles. Lifespan reduction by SIR4 deletion is suppressed by preventing mating type heterozygosity (co-expression of MATa and MATalpha). The sir4-42 mutation extends lifespan of by more than 30% and is semidominant in Bx1-14c strain which carrys a C-terminal truncation of MPT5/UTH4. sir4-42 extends lifespan by preventing recruitment of the SIR proteins to HM loci and telomeres, thereby increasing their concentration at other chromosomal regions. Expression of only the carboxyl terminus of SIR4 interferes with silencing at HM loci and telomere, which also extends lifespan [7859289]. Both Sir3 and Sir4 relocate to the nucleolus in the sir4-42 mutant background, dependent upon MPT5 and YGL023. sir4-42 has no effect on lifespan in a UTH4 wild-type strain background [9150138]. sir-4-42 results in constitutive localization of SIR3 to the rDNA. Lifespan extension by sir4-42 is likely due to increased dosage of SIR2 at the rDNA [10521401]. Budding yeast
    SIR2 Silent Information Regulator 2 Deletion of SIR2 shortens replicative lifespan by approximately 30%. Integration of a second copy of SIR2 into the wild-type strain leads to an extension of replicative lifespan by around 35% in W303R strain [10521401]. Deletion of SIR2 causes genomic instability at rDNA array [2647300] and shortens replicative lifespan by 50% [11000115]. 0.5% glucose restriction fails to increase the short lifespan of sir2Delta [11000115] probably duo to hyperaccumulations of extrachromosomal rDNA circles (ERCs) [16311627]. 0.1% glucose restriction extends replicative lifespan of sir2 mutants [12213553]. 0.5, 0.1 and 0.05% glucose restriction are able to increase lifespan of sir2;fob1 double mutant to a greater extent than in wild-type [15328540]. 0.05% glucose restriction further extends replicative lifespan of SIR2 overexpression mutant [15328540]. Sir2 blocks extreme chronological lifespan extension as the lack of Sir2 along with DR and/or mutations in the yeast AKT homolog, Sch9, or Ras pathways causes a dramatic chronological lifespan extension (6-fold) [16286010]. Sir2 inhibits formation of ERCs and acts on histones as well metabolic enzymes among others. Overexpression extends replicative lifespan in several strains, but not in PSY316 [15684413]. Chronological lifespan of sir2 deletion mutant is significantly extended compared with wild-type in water (extreme DR) but not in saturated cultures containing 2% glucose (ad libitum). SIR2 mutants are defective for telomere [1913809] and HM silencing [6098447; 3297920]. have increased rDNA recombination [2647300] and a loss of rDNA silencing [9009207; 9009206]. Budding yeast
    PNC1 Pyrazinamidase/NiCotinamidase 1 Cells with 5 copies of PNC1 have a 70% longer replicative lifespan which is cancelled out by SIR2 deletion. PNC1 is upregulated under glucose DR [12736687]. Pnc1 reduces cellular nicotinamide levels, a product and noncompetitive inhibitor of Sir2 deacetylation reaction. Overexpression of PNC1 suppresses the effect of exogenously added nicotinamide on Sir2-dependent silencing at HM loci, telomeres and rDNA loci [12736687; 14729974]. Pnc1 catalyses the breakdown of nicotinamide to nicotinate and ammonia [12736687]. Deletion of PNC1 shortens replicative lifespan approximately by 10% [12736687] and largely prevents replicative lifespan extension of 0.5% glucose restriction. 0.5% glucose restriction slightly extends median replicative lifespan (by 10 - 15%) but not maximum replicative lifespan in pnc1Delta [14724176]. PNC1 overexpression suppresses the inhibitory effect of exogenously added NAM on silencing, lifespan, and Hst1-mediated transcriptional repression [14729974]. Increased expression of PNC1 is both necessary and sufficient for replicative lifespan extension by DR and low-intensity stress. Under non-stressing conditions (2% glucose, 30 degree Celsius), a strain with additional copies of PNC1 (5XPNC1) has 70% longer replicative lifespan than the wild-type and some cells live for more than 70 divisions. Neither DR nor heat stress further increase the lifespan of the 5XPNC1 strain [12736687]. PNC1 deletion decreases chronological lifespan [17110466]. Budding yeast
    LAG2 Protein involved in determination of longevity Deletion of LAG2 in haploid SP1 strain does not affect growth, but results in a 50% decrease in the mean and maximum replicative lifespan. When LAG2 is overexpressed, the mean and maximum replicative lifespan is extended by about 36% and 54%, respectively. Overexpression induced at generation 12 similarly increases replicative lifespan [8760941]. Budding yeast
    pck-1 Phosphoenolpyruvate CarboxyKinase 1 RNA interference of pck-1 during the adulthood significantly shortens lifespan of both wild-type and eat-2 mutants. RNAi knockdown of pck-1 from hatching cases larval lethality. Overexpression of pck-1 greatly increases content of PEPCK-C, markedly induces enzyme activity and significantly increases mean, 75%ile, and maximum lifespan by 19-23%, 17-22%, and 21% [22810224]. Nematode
    Prx5 Peroxiredoxin 5 Prx5 overexpression causes an increase in mean and median lifespan under normal conditions. It also leads to a small increase in maximum lifespan. dprx5(-/-) null mutants are comparatively more susceptible to oxidative stress, have higher incidence of apoptosis, and a shortened mean lifespan, but thee is no significant difference in maximum lifespan (10% survival) [21826223]. Fruit fly
    MXR1 peptide Methionine sulfoXide Reductase 1 Deletion of MXR1 (alias MsrA) decreases by 25% and overexpression slightly increases the replicative lifespan [15141092]. Deletion of MXR1 decreases replicative lifespan [19049972]. MXR1 deletion decreases replicative lifespan on either glucose or lactate as carbon source [20799725]. Although deletion or overexpression of MXR2 (alias MsrB) has no effect under normal growth conditions, the simultaneous deletion of MXR1 and MXR2 reduces the lifespan by 63% [15141092]. Budding yeast
    NNT1 Nicotinamide N-methylTransferase 1 Deletion of NNT1 decreases mean and maximum lifespan by 9 and 19%. 0.5% glucose DR extends the mean and maximum lifespan of NNT1 deletion mutants by 35 and 40%. Overexpression of NNT1 by 5-fold extends mean and maximum replicative lifespan by 18 and 23%, which is approximately of the same magnitude as the lifespan extension obtained from DR. DR in NNT1 overexpression mutant fails to significantly affect the lifespan and only results in extended mean lifespan by 12% and reduced maximum lifespan by 11%. NNT1 overexpression increases rDNA silincing, whereas deletion decreases rDNA silencing. Overexpression of human nicotinamide N-methyltransferase also increases rDNA silencing [12736687]. Budding yeast
    NF1 Neurofibromin 1 NF1 mutants have a shortened lifespan and exhibited increased vulnerability to heat and oxidative stress as well as reduced mitochondrial respiration and elevated ROS production. Overexpression of NF1 increases mitochondrial respiration and reduced ROS production. It increases mean lifespan by 49% in males and 68% in females and maximum lifespan by 38% in males and 52% in females. It also improved reproductive fitness [17369827]. Fruit fly
    Kl Klotho Klotho disruption results in infertility and signs of premature ageing such as a short lifespan, arteriosclerosis, skin atrophy, osteoporosis, and emphysema. Klotho overexpression leads to lifespan extension [9363890]. Klotho is highly expressed in brain and kidney [10631108]. The circulating form of Klotho binds to a cell-surface receptor and represses intracellular signals of insulin and IGF1. Perturbing insulin and IGF1 alleviates the aging-like phenotypes in Klotho-deficient mice [16123266]. kl/kl mice initially develop normally but exhibit growth retardation starting at 3-4 weeks of age. Their average lifespan is 61 days (none more than 100 days). These mice gradually become inactive, with reduced stride length, atrophic genital organs, thymus atrophy, arteriosclerosis (medial calcification and intimal thickening), ectopic calcification in arterial walls, osteroposis, skin atrophy, impaired maturation of gonadal cells, emphysema, reduced growth hormone-producing cells in the pituitary gland, slight hypercalcemia, and hyperphosphatemia [9363890]. kl/kl mice have decreased insulin production and increased insulin sensitivity [11016890]. House mouse
    Hsp22 Heat shock protein 22 Overexpression of mitochondrial Hsp22 in all cells or specifically in motorneurons (using GAL4/UAS binary system) increases life lifespan by 32% and resistance to oxidative stress [19948727; 20036725]. Ubiquitous or a targeted expression of Hsp22 within motorneurons increases the mean lifespan by more than 30%. Hsp22 shows beneficial effects on early-aging events since the premortality phase displays the same increase as the mean lifespan [14734639]. Animals that do not express Hsp22 (due to a transposition into its transcriptional starting site) have a 40% decrease in lifespan, exhibit a 30% decrease in locomotor activity and are sensitive to mild stress [20036725]. Doxycyline-regulated overexpression of Hsp22 makes animals more sensitive to heat and oxidative stress as well as reduces the mean lifespan by up to 21%, particularly at higher culture temperature [15491684]. Hsp22-promoter driven reporter overexpression reduces mean and maximum lifespan [19420297]. Histone deacetylase inhibitor Trichostatin A (TSA) extends the lifespan of *Drosophila melanogaster* by promoting the hsp22 gene transcription, and affecting the chromatin morphology at the locus of hsp22 gene along the polytene chromosome [15346199]. Fruit fly
    hsf-1 Heat Shock Factor 1 RNA interference of hsf-1 suppresses normal dauer formation and life-extension due to insulin-like signaling [14668486]. hsf-1 overexpression extends mean, median, and maximum lifespan by 37, 35, and 29%[22737090]. hsf-1 RNAi abrogates lifespan extension by daf-2(e1370) mutation, but not eat-2(ad1116) or isp-1(qm150). HSF-1, like DAF-16, is required for daf-2 mutations to extend lifespan [12750521]. A mutant allele of hsf-1 slightly decreases lifespan under AL, but cancels out the lifespan extension effect of bDR. hsf-1 RNAi also prevents lifespan extension by bDR. bDR significantly reduces paralysis of Q35YFP or ABeta42 transgenic animals and hsf-1 RNAi totally cancels this effect. DR confers a general protective effect against proteotoxicity and promotes longevity by a mechanism involving hsf-1 [18331616]. Glucose or glycerol does not shorten the lifespan of hsf-1 mutants. Glucose treatment completely suppresses the long lifespan caused by hsf-1 overexpression [19883616]. sDR extends the lifespan of hsf-1 mutant with a premature stop codon, that eliminates activation domain, and that of wild-type to a similar extent [19239417]. hsf-1 RNAi attenuates lifespan extension by bDR, but only partially that of daf-2 mutation. hsf-1 RNAi attenuates protection against oxidative stress by bDR. hsf-1 expression is induced by bDR [19924292]. RNAi of hsf-1 shortens median and maximum lifespan by approximately 35%. hsf-1 RNAi animals exhibit phenotypes associated with accelerated aging (as assyed by Nomarsky microscopy) [12136014]. Nematode
    GLaz Glial Lazarillo Overexpression of GLaz results in increased resistance to hyperoxia (100% O2) and a 29% extension of mean lifespan under normoxia. Lifespan was also extended 30-60% under starvation [16581512]. Loss-of-function mutation of GLaz which decreases its expression of GLaz results in shorter lifespan and decreased resistance to oxidative stress in males [16581513]. Fruit fly
    pha-4 defective PHArynx development 4 pha-4 is required for multiple forms of DR. RNAi of pha-4 completely cancels out the lifespan extension of eat-2 mutation. Mutants of pha-4 do not respond to bacterial DR. Therefore, loss of pha-4 completely blocks the response to varying food concentration. Moreover, pha-4 expression is increased in response to DR in wild-type. pha-4 overexpression increases longevity of wild-type only slightly, but significant that of daf-16 mutants. The response to DR involves the PHA-4-dependent expression of sod-1, sod-2 and sod-5. Reduction of pha-4 does not suppress the long lifespan of daf-2 mutants or animals with defective electron transport chain [17476212]. IF significantly extends lifespan of pha-4 [19079239]. sDR extends lifespan of mutants with a temperature sensitive allele of pha-4 or pha-4 RNAi knockdown, but not daf-16 RNAi [19239417]. PHA-4 may play a role in the life-extending effects of dietary restriction. RNAi of pha-4 decreases lifespan of wild-type worms, but not of daf-2 mutants or of animals with defective electron transport chains. Nematode
    Cisd2 CDGSH iron sulfur domain 2 Cisd2 knockouts expire premature ageing and reduced lifespan [19451219]. A persistent level of Cisd2 achieved by transgenic expression extends mean, median and maximum lifespan without any apparent deleterious side effects [22661501]. House mouse
    cst-1 Caenorhabditis STE20-like kinase 1 Knockdown of cst-1 shortens lifespan and accelerates tissue aging while its overexpression extends lifespan and delays aging in a daf-16-dependent manner [16751106]. Nematode
    Bub1b budding uninhibited by benzimidazoles 1 homolog, beta (S. cerevisiae) Bub1b hypomorphic mutation decreases median lifespan by 60% (from 15 to 6 months) and such mutant mice that procude low levels of the protein are prone to aneuplody and develop many phenotypes suggestive of accelerated aging, including short lifespan, growth retardation, sarcopenia, lordokyphosis, progressive bilateral cataracts, substantial loss of sub dermal adipose tissue, spinal kyphosis, muscle atrophy, reduced dermal thickness and decreased wound healing [15208629; 17272762; 16781018; 18516091]. Moreover, there is a pronounced increase in senescent associated Beta-galactosidase expression in late generation Bub1b mutant mice, indicative of increased rate of cellular senescence. Homozyogous knockout of Bub1b results in lethality, while heterozygous animals exhibit no aging phenotypes [15208629]. Sustained high-level expression of BubR1 preserves genomic integrity and reduces tumorgenesis (even in the presence of genetic alterations that strongly promote aneuplodization and cancer, such as oncogenic Ras) and extends the lifespan and delays age-related deterioriation and aneuploidy in several tissues [23242215]. BubR1 overabundance exerts its protective effect by correcting mitotic checkpoints defects [23242215]. BubR1 expression level declines with age in various tissues [15208629; 17272762; 16781018]. The median and maximum lifespan of mice with a nonsense mutation 2211insGTTA in BubR1 is significantly reduced. BubR1(+/GTTA) mice develop several aging-related phenotypes at an accelerated rate, including catarct formation, lordokyphosis, skeletal muscle wasting, impaired exercise ability, and fat loss. Further BubR1(+/GTTA) mice develop mild anaplodies and exhibit enhanced growth of carcinogen-induced tumors [Wijshake et al. 2012]. House mouse
    • Page 1 of 2
    • 25 of 35 factors
    Factors are an extension of GenAge and GenDR.

    Comment on This Data Unit