Factors

We need to know every factor which determines lifespan.

Lifespan factors often but not always originate from defined genetic elements. They are not just genes, by definition they can be anything for which a Classifications schema can be build for that is related to the regulation of lifespan, such entities may include Single-Nucleotide Polymorphism, transcript variants, proteins and their complexes, compounds (i.e. small molecules like metabolites and drugs), etc. A factor should be based on a defined molecular entity or genomic position and been classified. It shall be highly flexible and scalable Concept.

While individual lifespan factors within each species or precise defined molecular entities will be captured within the Lifespan App, Data Entries of the Data App may summarize for instance the relevance of each factor class (e.g. homologous group; chemical derivate of related structure and properties, etc.) as well as draw overall conclusions. o

prometheus--2.jpg

  • symbol name observation species
    Cdkn2a cyclin-dependent kinase inhibitor 2A Cdkn2a encodes different transcripts involved mostly in cell cycle regulation and cellular senescence [12882406], but it can also act as a tumor suppressor. Its expression level increase with age in rodents [15520862]. super-Ink4a/Arf mice carrying a transgenic copy of a large genomic segment containing an intact and complete copy of the Cdkn2a (a.k.a. Ink4a/Arf) gene are significantly protected from cancer and had no indication of accelerated aging. Cells derived from super-Ink4a/Arf mice have increased resistance to in vitro immortalization and oncogenic transformation [15520276]. Loss of Cdkn2a in mice results in tumour susceptibility [11544530]. Mice deficient in Cdkn2a have smaller age-related decline in self-renewal potential as this process is associated with increasing levels of Cdkn2a [16957738]. Increased levels of p16 are associated with aging (Krishnamurthy et al., 2006; Molofsky et al., 2006) and a bona fide marker of cellular senescence (Collado et al., 2007). p16INK4a accumulates in many tissues as a function of advancing age (Krishnamurthy et al., 2004; Nielsen et al., 1999; Zindy et al., 1997) and is an effector of senescence (Campisi, 2003; Park et al., 2004), p16INK4a is a potent inhibitor of proliferative kinase Cdk4 (Lowe and Sherr, 2003) which is essential for pancreatic ?-cell proliferation in adult mammals (Rane et al., 1999; Tsutsui et al., 1999). p16INK4a constrains islet proliferation and regeneration in an age-dependent manner. Expression of the p16INK4a transcript is enriched in purified islets compared with the exocrine pancreas and islet-specific expression of p16INK4a increases markedly with aging (Krishnamurthy et al., 2006). Aging in mammals is associated with reduced regenerative capacity in tissues that contain stem cells (Chien and Karsenty, 2005) which is probably partially caused by senescence of progenitors with age (Campisi, 2005; Lombard et al., 2005). Progenitor proliferation in subventricular zone and neurogenesis in the olfactory bulb as well as multipotent progenitor frequency and self-renewal potential, all decline with ageing the mouse forebrain. The decline in progenitor frequency and function correlate with increased expression of p16INK4a (Molofsky et al., 2006). Aging p16INK4a-deficient mice exhibit a significantly smaller decline in subventricular zone proliferation, olfactory bulb neurogenesis and the frequency and self-renewal potential of multipotent progenitors (Molofsky et al., 2006). p16 expression in skin cells is significantly lower the the group that has a strong family history of longevity. As such a younger biological age associates with lower levels of p16INKfa positive cells [22612594]. p16 expression increases exponentially with age. Expression of p16INK4a with age does not predict cancer development. p16INK4a activation is a characteristic of all emerging cancers [http://denigma.de/url/3n]. House mouse
    Celsr3 Cadherin EGF LAG seven-pass G-type receptor 3 Celsr3 is transcriptional downregulated in the cerebral cortex at the age 28 months under different longevity conditions such as under dietary restriction (DR) as well as in feeding switch regimens that result in extended lifespan, like early age switch to DR as well as the reverse switch under the influence of the DR-mimetic α-lipoic acid (i.e. DR switched to ad libitum+ lipoic acid) [Shona et al. 2013]. Norway rat
    CETP cholesteryl ester transfer protein, plasma Homozygousity for the I405V variant of CETP is associated with exceptional longevity and larger HDL and LDL particle sizes as well as lower prevalence of hypertension, cardivascular disease, and metabolic disease among Askenazi Jews [14559957]. CETP I405V homozygousity is associated with exceptional longevity and preservation of cognitive function in Askenazi Jews [17190939]. V/V homozygotes tend to have a 9-23% CETP deficiency [9610775; 15243211]. A decrease in CETP function increases HDL (high density lipoproteins) levels in the body, and decreases LDL (low-density lipoprotein). The result of this s that HDL-c levels are approximately equal in individuals with the I/I or I/V genotypes, while there are ten percent higher in V/V individuals [9610775]. Therefore the V/V SNP acts kind like an endogenous *CEPT inhibitor*, which might be the responsible for the increase in longevity but may also have side effects.CETP was found to be associated with longevity [22336474].CETP was found to be associated with longevity [15621216].CETP was found to be associated with longevity [15888337]. CETP was found to be associated with longevity [22234866]. CETP was found to be associated with longevity [22336474]. CETP was found to be associated with longevity [23389097]. CETP was found to be associated with longevity [23389097]. CETP was found to be associated with longevity [15621216]. CETP was found to be associated with longevity [15888337]. CETP was not found to be associated with longevity [23389097]. CETP was found to be associated with longevity [14559957]. CETP was found to be associated with longevity [16602826]. CETP was found to be associated with longevity [23162014]. CETP was not found to be associated with longevity [14559957]. CETP was found to be associated with longevity [18034366]. CETP was not found to be associated with longevity [24468472]. Human
    CFB complement factor B Genetic variations in CFB are not associated with longevity in Italian [10219002]. Human
    CG17856 RNAi of CG17856 results in an increase in mean lifespan of 13-18% in females. In the case of males and post-developmental experiments the results are variable [19747824]. Fruit fly
    CG18809 RNAi of CG18809 results in a 7-19% increase in mean lifespan of females, while neural RNAi results in an increased mean lifespan of up to 12% in females. For males the results are variable [19747824]. Fruit fly
    CG3776 Both overexpression and underexpression of CG3776 (alias Jhebp29) reduces the mean lifespan, where the reduction in males is slightly higher. The lifespan of male flies with under- and overexpressed CG3776 is reduced by 38.8 and 42.6%, respectively when compared with Oregon R flies.The lifespan of female flies with under- and overexpressed CG3776 is reduced by 31.6 and 35%, respectively when compared to Oregon R flies. Among the males and females, relatively to Oregon R and EP835/CyO, the age-specific survival of EP835/EP835 and EP835/Gal4 is reduced in both log-rank and Wilcoxon tests (P < 0.001); survival of EP835/EP835 and EP835/Gal4 differed using the log-rank-test (male: P<0.001; female: P=0.027) [18275960]. Fruit fly
    CG5389 RNAi of complex V subunit CG5389 results in increased mean longevity under standard laboratory food conditions (3% yeast) in males. RNAi started from the development results in a mild lifespan increase in both sexes (3-11% in females and 3-8% in males). Post-developmental RNAi and silencing limited to neurons has variable effects with reduction in lifespan of up to 9% [19747824]. Under rich media conditions CG5389 knockdown throughout development and adulthood increases mean lifespan by 26% and abolished the lifespan extension by DR (started in the adulthood) in males. Suppression of CG5389 only during the adulthood either via RNAi by tub-GS or via oligomycin (a specific inhibitor of complex V) feeding prevents an increase in longevity under DR (started in the adulthood) in males [19968629]. Fruit fly
    CG9172 RNAi against CG9172 increases mean lifespan in females by up to 4-12% when applied in both development and adulthood, and up to 46% when applied in adult neurons only. For males the effect is variable [19747824]. Fruit fly
    Chmp2a charged multivesicular body protein 2a Chmp2a is transcriptional upregulated in the cerebral cortex at the age 28 months under different longevity conditions such as under dietary restriction (DR) as well as in feeding switch regimens that result in extended lifespan, like early age switch to DR as well as the reverse switch under the influence of the DR-mimetic α-lipoic acid (i.e. DR switched to ad libitum+ lipoic acid) [Shona et al. 2013]. Norway rat
    CLU clusterin Overexpression of the secretory form of human Clusterin in fruit flies increases mean lifespan. hClu overexpression flies also have greater tolerance to heat shock, wet starvation, and oxidative stress and the whole body amounts of reactive oxygen species is lower [22465014].CLU was found to be associated with longevity [16804001]. Fruit fly
    Col4a5 collagen, type IV, alpha 5 Col4a5 is transcriptional downregulated in the cerebral cortex at the age 28 months under different longevity conditions such as under dietary restriction (DR) as well as in feeding switch regimens that result in extended lifespan, like early age switch to DR as well as the reverse switch under the influence of the DR-mimetic α-lipoic acid (i.e. DR switched to ad libitum+ lipoic acid) [Shona et al. 2013]. Norway rat
    Cox14 COX14 cytochrome c oxidase assembly Cox14 (D3ZWG6_RAT) is transcriptional upregulated in the cerebral cortex at the age 28 months under different longevity conditions such as under dietary restriction (DR) as well as in feeding switch regimens that result in extended lifespan, like early age switch to DR as well as the reverse switch under the influence of the DR-mimetic α-lipoic acid (i.e. DR switched to ad libitum+ lipoic acid) [Shona et al. 2013]. Norway rat
    Cox5a Cytochrome c oxidase subunit 5A, mitochondrial Cox5a is transcriptional upregulated in the cerebral cortex at the age 28 months under different longevity conditions such as under dietary restriction (DR) as well as in feeding switch regimens that result in extended lifespan, like early age switch to DR as well as the reverse switch under the influence of the DR-mimetic α-lipoic acid (i.e. DR switched to ad libitum+ lipoic acid) [Shona et al. 2013]. Norway rat
    Cox7c cytochrome c oxidase, subunit VIIc Cox7c is transcriptional upregulated in the cerebral cortex at the age 28 months under different longevity conditions such as under dietary restriction (DR) as well as in feeding switch regimens that result in extended lifespan, like early age switch to DR as well as the reverse switch under the influence of the DR-mimetic α-lipoic acid (i.e. DR switched to ad libitum+ lipoic acid) [Shona et al. 2013]. Norway rat
    CPB2 carboxypeptidase B2 (plasma) Genotypes of the CPB2 gene were studied in 2224 men and women aged 65 or older at baseline. During 10 years of follow-up, men with the -438 A/A genotype had decreased mortality due to all causes, and lived, on average, longer than men with the -438 G allele. The effects of -438 G/A in women were smaller and not statistically significant [15939070].CPB2 was found to be associated with longevity [15939070]. Human
    Cyth2 Cytohesin-2 Cyth2 is transcriptional uprgulated in the cerebral cortex at the age 28 months under different longevity conditions such as under dietary restriction (DR) as well as in feeding switch regimens that result in extended lifespan, like early age switch to DR as well as the reverse switch under the influence of the DR-mimetic α-lipoic acid (i.e. DR switched to ad libitum+ lipoic acid) [Shona et al. 2013]. Norway rat
    D3ZTB8_RAT D3ZTB8_RAT is transcriptional downregulated in the cerebral cortex at the age 28 months under different longevity conditions such as under dietary restriction (DR) as well as in feeding switch regimens that result in extended lifespan, like early age switch to DR as well as the reverse switch under the influence of the DR-mimetic α-lipoic acid (i.e. DR switched to ad libitum+ lipoic acid) [Shona et al. 2013]. Norway rat
    D3ZWG6_RAT D3ZWG6_RAT is transcriptional upregulated in the cerebral cortex at the age 28 months under different longevity conditions such as under dietary restriction (DR) as well as in feeding switch regimens that result in extended lifespan, like early age switch to DR as well as the reverse switch under the influence of the DR-mimetic α-lipoic acid (i.e. DR switched to ad libitum+ lipoic acid) [Shona et al. 2013]. Norway rat
    D4ACK9_RAT D4ACK9_RAT is transcriptional upregulated in the cerebral cortex at the age 28 months under different longevity conditions such as under dietary restriction (DR) as well as in feeding switch regimens that result in extended lifespan, like early age switch to DR as well as the reverse switch under the influence of the DR-mimetic α-lipoic acid (i.e. DR switched to ad libitum+ lipoic acid) [Shona et al. 2013]. Norway rat
    Dctn6 dynactin subunit 6 Kndc1 is transcriptional upregulated in the cerebral cortex at the age 28 months under different longevity conditions such as under dietary restriction (DR) as well as in feeding switch regimens that result in extended lifespan, like early age switch to DR as well as the reverse switch under the influence of the DR-mimetic α-lipoic acid (i.e. DR switched to ad libitum+ lipoic acid) [Shona et al. 2013]. Norway rat
    DNApol-gamma35 DNA polymerase gamma 35kD Overexpression of DNApol-gamma35 (DNA polymerase gamma) in the nervous system results in a decrease in the median lifespan ranging from 39% to 52% [17999718]. Fruit fly
    Drd4 Dopamine D4 Receptor Drd4 knockout mice, when compared with wild-type and heterozygous mice, display a 7 - 9.7% decrease in lifespan, reduced spontaneous locomotor activity, and no lifespan increase when reared in an enriched environment [23283341]. House mouse
    Dys Dystroglycan Loss of dys function in the heart leads to an age-dependent disruption of the myofibrillar organization within the myocardium as well as to alterations in cardiac performance. dys RNAi-mediated knockdown in the mesoderm also shortens lifespan. Mesodermal dys knockout results in a morderate maximum lifespan reduction (13%), but not when exclusively targeted to the heart. In contrast, half of the transheteozygous DysExel618/Dyskx43 deficiency flies die at 29 days compared to 63 days in controls. This indicates that a moderate dye loss-of-function in all muscles, but not in just the heart, reduces the normal lifespan [18221418]. Fruit fly
    E(z) Enhancer of zeste Flies heterozygous for the protein null E(z)63 or the catalytically inactive E(z)731 mutation that are progeny of an out-cross to an Oregon-R (O-R) wild-type strain exhibit a substantially greater median lifespan than the O-R control (71% and 76%, respectively). When derived from an out-cross to a longer-lived Canton-S (C-S) wild-type strain, the median lifespan of E(z)63 heterozygous is 33% longer than the C-S control [20018689]. Fruit fly
    Factors are an extension of GenAge and GenDR.

    Comment on This Data Unit