Factors

We need to know every factor which determines lifespan.

Lifespan factors often but not always originate from defined genetic elements. They are not just genes, by definition they can be anything for which a Classifications schema can be build for that is related to the regulation of lifespan, such entities may include Single-Nucleotide Polymorphism, transcript variants, proteins and their complexes, compounds (i.e. small molecules like metabolites and drugs), etc. A factor should be based on a defined molecular entity or genomic position and been classified. It shall be highly flexible and scalable Concept.

While individual lifespan factors within each species or precise defined molecular entities will be captured within the Lifespan App, Data Entries of the Data App may summarize for instance the relevance of each factor class (e.g. homologous group; chemical derivate of related structure and properties, etc.) as well as draw overall conclusions. o

prometheus--2.jpg

  • symbol name observation species
    Hsc70-3 Heat shock protein cognate 3 Overexpression of Hsc70-3 increases average female lifespan by 27% [18059160]. Fruit fly
    hsf-1 Heat Shock Factor 1 RNA interference of hsf-1 suppresses normal dauer formation and life-extension due to insulin-like signaling [14668486]. hsf-1 overexpression extends mean, median, and maximum lifespan by 37, 35, and 29%[22737090]. hsf-1 RNAi abrogates lifespan extension by daf-2(e1370) mutation, but not eat-2(ad1116) or isp-1(qm150). HSF-1, like DAF-16, is required for daf-2 mutations to extend lifespan [12750521]. A mutant allele of hsf-1 slightly decreases lifespan under AL, but cancels out the lifespan extension effect of bDR. hsf-1 RNAi also prevents lifespan extension by bDR. bDR significantly reduces paralysis of Q35YFP or ABeta42 transgenic animals and hsf-1 RNAi totally cancels this effect. DR confers a general protective effect against proteotoxicity and promotes longevity by a mechanism involving hsf-1 [18331616]. Glucose or glycerol does not shorten the lifespan of hsf-1 mutants. Glucose treatment completely suppresses the long lifespan caused by hsf-1 overexpression [19883616]. sDR extends the lifespan of hsf-1 mutant with a premature stop codon, that eliminates activation domain, and that of wild-type to a similar extent [19239417]. hsf-1 RNAi attenuates lifespan extension by bDR, but only partially that of daf-2 mutation. hsf-1 RNAi attenuates protection against oxidative stress by bDR. hsf-1 expression is induced by bDR [19924292]. RNAi of hsf-1 shortens median and maximum lifespan by approximately 35%. hsf-1 RNAi animals exhibit phenotypes associated with accelerated aging (as assyed by Nomarsky microscopy) [12136014]. Nematode
    hsp-16.1 Heat Shock Protein Overexpression of the hsp-16 loci enhances stress resistance and extends mean lifespan by 11% at 20 degree Celsius. Lifespan extension by hsp-16 overexpression requires daf-16 [12882326]. Nematode
    hsp-16.48 Heat Shock Protein Overexpression of the hsp-16 loci enhances stress resistance and extends mean lifespan by 11% at 20 degree Celsius. Lifespan extension by hsp-16 overexpression requires daf-16 [12882326]. RNAi of hsp-16.48 has no effect on adult wild-type lifespan but slightly shortens the long lifespan of age-1(hx546) mutants [14668486]. Nematode
    hsp-16.49 Heat Shock Protein Overexpression of the hsp-16 loci enhances stress resistance and extends mean lifespan by 11% at 20 degree Celsius. Lifespan extension by hsp-16 overexpression requires daf-16 [12882326]. Nematode
    hsp-6 Heat shock 70kDa protein 9B (mortalin-2) Overexpression of hsp-6 from a muscle-specific promoter extends lifespan mean and maximum lifespan by 43 and 45% relatively to animals expressing GFP from the same promoter [11959102]. Nematode
    Hsp22 Heat shock protein 22 Overexpression of mitochondrial Hsp22 in all cells or specifically in motorneurons (using GAL4/UAS binary system) increases life lifespan by 32% and resistance to oxidative stress [19948727; 20036725]. Ubiquitous or a targeted expression of Hsp22 within motorneurons increases the mean lifespan by more than 30%. Hsp22 shows beneficial effects on early-aging events since the premortality phase displays the same increase as the mean lifespan [14734639]. Animals that do not express Hsp22 (due to a transposition into its transcriptional starting site) have a 40% decrease in lifespan, exhibit a 30% decrease in locomotor activity and are sensitive to mild stress [20036725]. Doxycyline-regulated overexpression of Hsp22 makes animals more sensitive to heat and oxidative stress as well as reduces the mean lifespan by up to 21%, particularly at higher culture temperature [15491684]. Hsp22-promoter driven reporter overexpression reduces mean and maximum lifespan [19420297]. Histone deacetylase inhibitor Trichostatin A (TSA) extends the lifespan of *Drosophila melanogaster* by promoting the hsp22 gene transcription, and affecting the chromatin morphology at the locus of hsp22 gene along the polytene chromosome [15346199]. Fruit fly
    Hsp23 Heat shock protein 23 Overexpression of Hsp23 increases mean lifespan by more than 30% and increases the premortality phase [14734639]. Fruit fly
    Hsp26 Heat shock protein 26 Overexpression of Hsp26 (by the UAS/GAL4 system) increases stress resistance and extends the mean lifespan by 30% [15308776]. Fruit fly
    Hsp27 Heat shock protein 27 Overexpression of Hsp27 (by the UAS/GAL4 system) increases stress resistance and extends the mean lifespan by 30% [15308776]. Fruit fly
    Hsp68 Heat shock protein 68 Overexpression of Hsp68 extends modestly (by around 15%) median and maximum lifespan [14602080]. Hsp68 is activated by the JNK pathway and target gene of foxo [20976250]. There is a consistent and significant lifespan extension by 20% in both males and females when hsp68 is overexpressed in somatic cells. hsp68 overexpression using GMR-Gal4, and eye-specific driver that expresses Gal4 in salivary glands has no effects. Hsp78 overexpression using the weaker 5961FS driver moderately but significantly extends lifespan [20976250]. Fruit fly
    Hsp70Bb Hsp70Bb Heat-shock-protein-70Bb Overexpression of the Hsp70 locus (containing Hsp70Bb and Hsp70Bc) in transgenic flies extends lifespan as much as 7.9% [9363888]. Fruit fly
    Hsp70Bc Heat-shock-protein-70Bb Overexpression of the Hsp70 locus (containing Hsp70Bb and Hsp70Bc) in transgenic flies extends lifespan as much as 7.9% [9363888]. Fruit fly
    HSPA9 heat shock 70kDa protein 9 (mortalin) Overexpression of HSPA9 (mortalin) increases the proliferation potential of normal fibroblasts [11959102]. Transfection of normal human fibroblasts with human HSPA9 (or the murine Hspa9) overexpression vectors led to an increase in the number of population doublings the cells could sustain before senescing (increase varying from 32-60%, depending on the exact construct used). Transfected cells retain a youthful morphology longer than the controls cells, and there is an dealy in appearance of senescence associated beta-galactosidase activity [10838077]. Mot-2 overexpressing cells exhibit a reduction in p53 transcriptional activation (as measured by expression from vectors containing either luciferase or beta-glactosidase driven by p53 binding sites) [10838077], which might partially or wholly explain the effects of Mot-2 on proliferative potential. HSPA9 is differentially distributed and/or translated in normal vs. transformed cells [8454632]. Human
    HST2 Homolog of SIR Two (SIR2) 2 HST2 overexpression extends replicative lifespan. 0.5% glucose restriction does not increase lifespan of sir2;fob1;hst2 triple mutants [16051752]. DR increases lifespan of all four sir2;fob1;hstX(X = sirtuin) triple mutants [16741098; 17129213]. Budding yeast
    Igf1 Insulin-like growth factor 1 (somatomedin C) Cardiac specific overexpression of Igf1 results in a 23% increase in median lifespan, though no increase in maximum lifespan [17973971]. House mouse
    IME1 Inducer of MEiosis 1 Transient overexpression of IME1 resets the replicative lifespan of old cells back to that of young cells [21700873]. Budding yeast
    ImpL2 Ecdysone-inducible gene L2 Lmp-L2 over-expression, ubiquitous or restricted to DILP-producing cells and/or gut and fat body, extends lifespan even if induced at adult onset [21108726]. Overexpression of ImpL2 increases mean and maximum lifespan by 15% and 23%, respectively. Lifespan is reduced when Impl2 is strongly over-expressed throughout the adult by the conditional GS driver, act-GS-GAL4 or da-GS-Gal3, while restricted over-expression of the ImpL2 in fat cells by using S106-GS-Gal4, which increases mRNA level about 6-fold extends lifespan in both sexes [22366109]. mRNA for Impl2 was strongly elevated in sterile, long-lived flies [18434551]. Fruit fly
    INS insulin Expression of human insulin under an inducible heat shock promoter increases nematode lifespan by 25% and is also able to enhance the lifespan of daf-2 mutants [11274053]. INS was found to be associated with longevity [22406557; 19367319; 17989723; 19489743]. Human
    ins-1 INSulin related Increased dosage of ins-1 under its own promoter as well as a heat shock promoter increases lifespan by 25% and is also able to increase the lifespan of daf-2 mutants [11274053]. ins-1 RNAi increases lifespan by 20%. ins-1 is differentially transcribed in daf-16 and daf-2 animals [12845331]. Overexpression of ins-1 also causes an increase in dauer formation and can enhance the dauer formation of daf-2 mutants [11274053]. Nematode
    Irs2 insulin receptor substrate 2 Irs2 brain-specific knockout mice were overweight, hyperinsulinemic, glucose intolerant, yet more active and lived up to 18% longer. House mouse
    Jafrac1 thioredoxin peroxidase 1 Neuronal overexpression of Jafrac1 significantly increases both mean and maximum lifespan, while neuronal knockdown as well as loss of function mutation, causes a reduction in lifespan by 30%. The mean lifespan is 26% and 29% higher in females and males, respectively. The maximum lifespan is increased by 22% and 26% in females and males, respectively [19720829]. There is a consistent and significant lifespan extension (15% mean lifespan increase) in both males and females when Jafrac1 is overexpressed in somatic cells. Jafrac1 overexpression using the weaker 5961FS driver moderately but significantly extends lifespan [20976250]. Fruit fly
    jnk-1 Jun N-terminal Kinase Overexpression of jnk-1 increases lifespan by 40% [15767565; 23097426]. JNK-1 overexpression extends the lifespan in a daf-16-dependent manner. JNK-1 directly phosphorylates DAF-16. JNK-1 overexpression does not extend the lifespan of animals unable to synthesize miRNAs, i.e. pash-1(mj100) [23097426]. Nematode
    Kl Klotho Klotho disruption results in infertility and signs of premature ageing such as a short lifespan, arteriosclerosis, skin atrophy, osteoporosis, and emphysema. Klotho overexpression leads to lifespan extension [9363890]. Klotho is highly expressed in brain and kidney [10631108]. The circulating form of Klotho binds to a cell-surface receptor and represses intracellular signals of insulin and IGF1. Perturbing insulin and IGF1 alleviates the aging-like phenotypes in Klotho-deficient mice [16123266]. kl/kl mice initially develop normally but exhibit growth retardation starting at 3-4 weeks of age. Their average lifespan is 61 days (none more than 100 days). These mice gradually become inactive, with reduced stride length, atrophic genital organs, thymus atrophy, arteriosclerosis (medial calcification and intimal thickening), ectopic calcification in arterial walls, osteroposis, skin atrophy, impaired maturation of gonadal cells, emphysema, reduced growth hormone-producing cells in the pituitary gland, slight hypercalcemia, and hyperphosphatemia [9363890]. kl/kl mice have decreased insulin production and increased insulin sensitivity [11016890]. House mouse
    LAG2 Protein involved in determination of longevity Deletion of LAG2 in haploid SP1 strain does not affect growth, but results in a 50% decrease in the mean and maximum replicative lifespan. When LAG2 is overexpressed, the mean and maximum replicative lifespan is extended by about 36% and 54%, respectively. Overexpression induced at generation 12 similarly increases replicative lifespan [8760941]. Budding yeast
    Factors are an extension of GenAge and GenDR.

    Comment on This Data Unit