Factors

We need to know every factor which determines lifespan.

Lifespan factors often but not always originate from defined genetic elements. They are not just genes, by definition they can be anything for which a Classifications schema can be build for that is related to the regulation of lifespan, such entities may include Single-Nucleotide Polymorphism, transcript variants, proteins and their complexes, compounds (i.e. small molecules like metabolites and drugs), etc. A factor should be based on a defined molecular entity or genomic position and been classified. It shall be highly flexible and scalable Concept.

While individual lifespan factors within each species or precise defined molecular entities will be captured within the Lifespan App, Data Entries of the Data App may summarize for instance the relevance of each factor class (e.g. homologous group; chemical derivate of related structure and properties, etc.) as well as draw overall conclusions. o

prometheus--2.jpg

  • symbol name observation species
    Phloridzin Administration of the apple polyphenol phloridzin at doses of 3, 10, and 30 microMolar siginificantly prolongs the replicative lifespan in K6001 yeast strain (p < 0.01; p < 0.001). Phloridizin improves the viability of cells under oxidative stress (7 microMolar H2O2) in a dose-dependent manner and increases the significantly the expression of SOD1, SOD2, and SIR2 [21597195].
    Ganodermasides A Application of Ganodermasides A extends the replicative lifespan of budding yeast in K6001 strain by regulating UTH1 expression [20093034].
    Ganodermasides B Application of Ganodermasides B extends the replicative lifespan of budding yeast in K6001 strain by regulating UTH1 expression [20093034].
    Gonadermasides C In budding yeast application of gonadermasides C significantly increases the replicative lifespan in the K6001 strain by regulating UTH1 [21512225].
    Gonadermasides D In budding yeast application of gonadermasides D significantly increases the replicative lifespan in the K6001 strain by regulating UTH1 [21512225].
    Oligomycin In fruit fly, Oligomycin feeding exends lifespan on ad libitum and prevents an increase in longevity under DR (started in the adulthood) in males [19968629].
    BBE Blueberry extract In fruit fly, supplementation of the diet with 5 mg/mL blueberry extract significantly extends the mean lifespan by 10% and is accompanied by an up-regulation of superoxide dismutase (SOD), catalase (CAT), and Rpn11 and down-regulationg of Methuselah (MTH). Lifespan is only extended in Oregon-R wild-type but not in SOD(n108) or Cat(n1) mutant strains [22197903].
    BTE Black tea extract Black tea extract is a mixture of epicatechins and theaflavins. In fruit fly, upplementation of the diet with black tea extract extends the lifespan by 10% (from 51 to 56 days) and is associated with higher SOD1 and CAT expression [19770032].
    Beau I beauveriolide I In budding yeast treatment with beauveriolide I (20 microgram/mL) extends chronological lifespan in BY4741 by around 50% [22790951].
    TRE Trehalose In nematodes treatment with trehalose starting from the young-adult stage extends the mean lifespan by over 30% without any side effects. Trehalose treatment starting even from the old-adult stage shortly thereafter retards the age-associated decline in survivorship and extends the remaining lifespan by 60%. Lifespan extension by trehalose lowers the age-independent vulnerability. Trehalose increases reproductive span and retards the age-associated decrease in pharyngeal-pumping rate and the accumulation of lipofuscin autofluorescence as well as enhances thermotolerance and reduces polyglutamine. The lifespan extending effect of trehalose is abolished in daf-2 mutants [20477758]. Trehalose is suggested to act as a stress protectant against heat, cold, desiccation, anoxia, and oxidation [20477758]. Treatment with trehalose reduces neurodegeneration in a transgenic mouse model of taupathy (human mutant P301S tau mouse. Neuronal survival is evaluated by trehalose. Trehalose induces autophagy in the brain, where the number of neurons containing tau inclusions is significantly reduced as well as the amount of insoluble tau protein and the protein levels of p62. However, trehalose fails to activate autophagy in the spinal cord, where it has no impact on the level of sarkosyl-insoluble tau. Trehalose has also no effect on the motor impairment of human mutant P301S tau transgenic mice [22689910].
    Spd Spermidine Administration of spermidine extends lifespan of yeast, flies and worms and human immune cells. In yeast spermidine treatment triggers deacetylation of H3 through inhibition of histone acetylatranserfases, suppresses oxidative stress and necrosis. Altered acetylation of the chromatin results in upregulation of various autophagy-related genes and triggers autophagy [19801973]. In nematodes treatment with 0.2 mM spermidine extends mean and maximum lifespan of wild-type by 16 and 13% significantly (<0.005) as well as the mean and maximum lifespan in sir-2.1(ok434) by 12 and 11% significantly (<0.01).
    Met Methionine In yeast restriction of the methionine content in the culture extends mean and maximum lifespan by up to 29 and 16% (1/10 methionine content) [15141092].
    Tyrosol In nematodes treatment with tyrosol (250 microMolar) extends mean, median, and maximum, lifespan by 21, 21, and 11% [22824366].
    arf-3 ADP-Ribosylation Factor related 3 RNA interference of arf-3 does not affect lifespan of wild-type but suppresses lifespan extension by isp-1 mutation [22829775].
    CS Cynomorium songaricum In fruit fly, the yang-tonifying herbal medicine cynomorium songaricum Repr. (CS) supplementation to the diet extends both the mean and the maximum lifespan of adult females, but insignificantly that of males. In females, maximum lifespan (determined by the 90th survival percentile) is increased by up to 11.4% with 10 mg/mL CS and 5.7% with both 20 and 30 mg/mL Cs. Mean lifespan is significantly extended by 15, 18 and 11% upon treatment with 10, 20, and 30 mg/mL CS, respectively (all P <0.001). Increased lifespan by CS is correlated with higher resistance to oxidative stress and starvation and lower lipid hydroxyperoxids levels as well as accompanied by beneficial effects, such as improved mating readiness, increased fecundity, and suppresion of age-related learning impairment in aged animals [22844336].
    Pinitol In fruit flies, Pinitol (a 3-methoxy analogue of D-chiro-inositol) supplementation to the diet. For both males and females, a 20 microMolar dose of pinitol significantly extends median lifespan by 13% (p < 0.05) and 12.5% (p < 0.05), respectively. Lifespan extension by pinitol is accompanied by protection against oxidative and starvation stresses, improvement in health span, and no reduction in fecundity. Pinitol increases organismal lifespan of both in dietary restriction and ad libitum conditions. Nuclear localization of foxo increases in pinitol-fed animals. Pinitol treatment significantly activates JNK and S6K, but not AKT [22843669].
    DCI D-chiro-inositol In fruit flies, D-chiro-inositol supplementation to the diet extends adult longevity in both male and female animals. 20 microMolar dose of D-chiro-inositol extends median lifespan by 16.7 (p < 0.001) for males and 13% (p < 0.001) for females. Lifespan extension by D-chrio-inositol is accompanied by protection against oxidative and starvation stresses, improvement in health span, and not reduction in fecundity. Nuclear localization of foxo increases in D-chiro-inositol-fed animals [22843669].
    SAG12 Introduction of a SAG12 via bacterial gene transfer (pSAG12:ipt) increases longevity. The gene results in enhanced production of the hormone Cytokinin which affects growth and development as well as stimulates cell division and thereby extends the lifespan. pSAG::ipt transgenic plants exhibit delayed leaf senescence, increased branching and reduced internodal length. The leaves and flowers of the pSAG12:ipt plants are reduced in size and display a more intense coloration [http://www.wissenschaft.de/wissenschaft/news/316062.html; http://www.biomedcentral.com/1471-2229/12/156/abstract; Garcia-Sogo et al. 2012].
    BRE Black rice extract In fruit fly, 30 mg/ml black rice extract prolonges mean lifespan by 14% which is accompanied with mRNA up-regulation of SOD1, SOD2, CAT and Rpn11 Rpn11 and with downregulation of Mth [22930061].
    Res Resveratrol Resveratrol significantly extends the lifespan of yeast [12939617]. Resveratrol supplementation prolongs the lifespan of nematodes [15254550; 17460219], but not in any case [17875315]. In fruit flies supplementation with resveratrol extends the lifespan [15254550], but not in always [17875315]. In Nothobranchius furzeri a maximum dose of resveratrol increases the median lifespan by 56% [16461283]. Resveratrol conteracts the detrimental effects of a high-fat diet in mice an decreases the risk of death by 30% and thereby reverting it to the level of normal diet. It also partially corrected a subset of the abnormal gene expression profile and insulin as well as glucose metabolism [17086191]. Although resveratrol has range a of beneficial effects in elderly mice, it does not increase the longevity of *ad libitum* fed mice when started midlife [18599363]. Even at high doses and when started in young adulthood reseveratrol supplementation does not increase lifespan on a normal diet [17578509; 20974732].
    MEL Melatonin Melatonin administrated to mice with drinking water increases anti-oxidant capacity of the brain and prolongs the mean lifespan by 20% of males but not females [11462771].
    NAS N-acetyl-serotonin N-acetyl-serotonin (a melatonin precursor) administrated in mice with drinking water increases anti-oxidant capacity of the brain and prolongs the mean lifespan by 20% of males but not females [11462771].
    Mincoycline In Drosophila melongaster treatment with minocycline (0.87mM) prolongs mean, median and maximum lifespan of wild-type (Oregon strain) of both genders. In females mincocycline extend mean and maximum lifespan by 57 and 78%, respectively. In males minocycline results in a mean and maximum lifespan extension by 114 and 28%, respectively [23185716].
    C60 [60]fullerene Oral administration of C60 dissolved in olive oil (0.8 mg/ml) at reiterated doses (1.7 mg/kg of body weight) for just about 7 months to rats not only does not entail chronic toxicity but it almost doubles the lifespan. The effects on lifespan is mainly due to the attenuation of age-associated increases in oxidative stress. Dissolved C60 is absorbed by the gastro-intestinal tract and eliminated in a few tens of hours [22498298]. C60-olive oil can increase the mean, median and maximum lifespan by 114, 91 and 74%. C60-olive oil extends the lifespan of animals with a probability of 0.999 and 0.995 with respect to water and olive oil treatments, respectively [22498298]. The GSSG/GSH ratio of animals treated by C60-olive oil is significantly less (about twice as less) as compared to controls [22498298]. C60 solutions have a characteristic purple color. C60 can cross the blood-brain barrier [21787853]. The elimination process follows a non-urinary route as it is mainly eliminated through the bile ducts [16351219; 21787853]. C60 reacts inside the liver cells with vitamin A following a Diels-Alder like reaction both in mice and rats [16351219].
    C3 Tris-malonic acid derivate of the fullerene C60 molecule Tris-malonic acid derivate of the fullerene C60 molecule (C3) increases the lifespan of Sod2(-/-) mice by 300% [15451059].
    Factors are an extension of GenAge and GenDR.

    Comment on This Data Unit