Factors

We need to know every factor which determines lifespan.

Lifespan factors often but not always originate from defined genetic elements. They are not just genes, by definition they can be anything for which a Classifications schema can be build for that is related to the regulation of lifespan, such entities may include Single-Nucleotide Polymorphism, transcript variants, proteins and their complexes, compounds (i.e. small molecules like metabolites and drugs), etc. A factor should be based on a defined molecular entity or genomic position and been classified. It shall be highly flexible and scalable Concept.

While individual lifespan factors within each species or precise defined molecular entities will be captured within the Lifespan App, Data Entries of the Data App may summarize for instance the relevance of each factor class (e.g. homologous group; chemical derivate of related structure and properties, etc.) as well as draw overall conclusions. o

prometheus--2.jpg

  • symbol name observation species
    Foxo3 House mouse
    Interleukin 6 IL-6 House mouse
    Hells helicase, lymphoid specific A hypomorphic deletion of helicase domains 3, 4 and part of 2, leads to expression of a C-terminal truncated Hells protein causing an extremely short lifespan. with 60% of homozyogous mutants dying after birth and remaining 40% surviving up to seven weeks (around 25 days) [15105378]. Hells disruption results in genomic hypomethylation, de-repression of silenced genes, and premature aging, characterized by decreased proliferation, increased replicative senescence, and altered expression of Bmi-1 and p16INK4a. Hells mutant exhibit significant hypoglycemia, low birth weight and growth retardation, and signs of premature aging such as greying hair and balding, reduced fat deposition, unstable gait, cachexia, and kyphosis [15105378]. House mouse
    Msh2 mutS homolog 2, colon cancer, nonpolyposis type 1 (E. coli) About 50% of knock-out animals were dead by 8 month of age and all animals were dead by 12 month of age because of increased incidence of multiple cancers making these model as putatively progeroid. House mouse
    Ctf1 Cardiotrophin 1 Absence of Ctf1 is associated with decreased arterial fibrosis, stiffness mad senescence and increased longevity. Ctf1-null mice have a decrease in arterial stiffness and decrease in levels of inflammatory, apoptotic and senescence, whereas telomere-linked and DNA repair proteins as well as antioxidant enzyme activities are increased. The median lifespan of Ctf1-null mice is increased by 5 month (18%) [23172930]. Wild-type and Ctf1-null mice exhibit an increase of senescence markers (p53, Mdm2, p21, and p16) with age but are lower in Ctf1-null mice. Ctf1-null mice have a diminished vascular NFκB signaling, lower inflammation and oxidative stress and reduced senescence. Ctf1-null mice have a 12% increase in body weight, 130% increased adiponectin levels and 51% decreased leptin concentrations [23172930]. Treatment of cells with CT-1 increases SA-β-galactosidase, and apotosis and senescence makers (p53, p21 and p16), without modifying Mdm2 expression [23172930]. House mouse
    Acacb acetyl-Coenzyme A carboxylase beta Acacb-null animals (alias Acc2-/-) exhibit upon regular diet an increase triglyceride breakdown, leaner phenotype, increased insulin sensitivity and no effect on lifespan [17923673]. House mouse
    Adcy5 adenylate cyclase 5 Adcy5 knockout mice are to cardiac stress and have an increased median lifespan of 30% as well as an increased maximal lifespan of 12%. Further, they are also protected from age-related reduced bone density and susceptibility to fractures, and reduced cardiac function [17662940]. House mouse
    2-MEA 2-Mercaptoethylanime hydrochloride Addition of 1% by weight 2-MEA to the diet of male LAF mice, started shortly after weaning, increases average lifespan by approximately 30%, but does not extend maximum lifespan [5723482; 11795501]. Addition of 2-MEA to the maternal diet of female mice increases the lifespan of male and female offspring by 15 and 8%, respectively [Harman & Eddy, 1979; 11795501]. Addition of 2-MEA of an antioxidant mixture containing ethoxyquin and 2-MEA to the diet of dietary restricted mice shortens lifespan approximately 20% [2394907]. References ---------------- Harman, D., and Eddy, D. E. (1979). Free radical theory of aging: beneficial effect of adding antioxidants to the maternal mouse diet on life span of offspring: possible explanation of the sex difference in longevity. Age 2, 109-22. House mouse
    Igf2 insulin-like growth factor 2 Altered imprinting of Igf2 does not affect longevity [20550518]. House mouse
    Mgat5 mannoside acetylglucosaminyltransferase 5 Although grossly normal at birth, knockout mice display multiple deficiencies with age including hypersensitivity to autoimmune disease, higher oxidative metabolism, resistance to weight-gain, and signs of early ageing such as osteoporosis, decreased muscle mass, and depletion of adult stem cells. Interestingly, Mgat5-/-Pten+/- and Mgat5+/-Pten+/- mutant mice showed a small but significant increase in lifespan when compared to Pten+/- mice, accompanied by an apparent delay in the inevitable development of cancer in Pten+/- mice. House mouse
    2-ME 2-Mercaptoethanol Animals fed a diet supplemented with 2-mercaptoethanol (2-ME) exhibit an increased mean and maximum lifespan [6334792]. T-cell-dependent immune responses are higher in the 2-ME-fed mice compared to the controls when the animals are young. The accumulation of fluorescent products of lipid peroxidation damage is also delayed in the lymphocytes of the 2-ME-fed mice and tumor onset and incidence is reduced in these animals [6334792]. House mouse
    Arntl aryl hydrocarbon receptor nuclear translocator-like Arntl knockout mice display symptoms of premature aging including a shorter lifespan, sarcopenia, cataracts, less subcutaneous fat, and organ shrinkage [16847346]. House mouse
    Atm Ataxia telangiectasia mutated homolog (human) Atm-deficient mice are viable, retarded in growth, infertile (male produce no mature sperm and female no gametes), display neurological dysfunction, and exhibit severe defects in T cell maturation while going on to develop thymomas [8917548; 8689683]. The majority of mutant mice rapidly develop thymic lymphomas and die before 4 months of age [8843194]. Cells of Atm(-/-) mice exhibit slow growth also in culture and premature senescence, telomeres are extensively shortened in multiple tissues [8689683]. Mice mutant for Atm and Terc display progressive multi-organ system compromise and features of accelerated aging [12540856]. House mouse
    Bub1b budding uninhibited by benzimidazoles 1 homolog, beta (S. cerevisiae) Bub1b hypomorphic mutation decreases median lifespan by 60% (from 15 to 6 months) and such mutant mice that procude low levels of the protein are prone to aneuplody and develop many phenotypes suggestive of accelerated aging, including short lifespan, growth retardation, sarcopenia, lordokyphosis, progressive bilateral cataracts, substantial loss of sub dermal adipose tissue, spinal kyphosis, muscle atrophy, reduced dermal thickness and decreased wound healing [15208629; 17272762; 16781018; 18516091]. Moreover, there is a pronounced increase in senescent associated Beta-galactosidase expression in late generation Bub1b mutant mice, indicative of increased rate of cellular senescence. Homozyogous knockout of Bub1b results in lethality, while heterozygous animals exhibit no aging phenotypes [15208629]. Sustained high-level expression of BubR1 preserves genomic integrity and reduces tumorgenesis (even in the presence of genetic alterations that strongly promote aneuplodization and cancer, such as oncogenic Ras) and extends the lifespan and delays age-related deterioriation and aneuploidy in several tissues [23242215]. BubR1 overabundance exerts its protective effect by correcting mitotic checkpoints defects [23242215]. BubR1 expression level declines with age in various tissues [15208629; 17272762; 16781018]. The median and maximum lifespan of mice with a nonsense mutation 2211insGTTA in BubR1 is significantly reduced. BubR1(+/GTTA) mice develop several aging-related phenotypes at an accelerated rate, including catarct formation, lordokyphosis, skeletal muscle wasting, impaired exercise ability, and fat loss. Further BubR1(+/GTTA) mice develop mild anaplodies and exhibit enhanced growth of carcinogen-induced tumors [Wijshake et al. 2012]. House mouse
    Igf1 Insulin-like growth factor 1 (somatomedin C) Cardiac specific overexpression of Igf1 results in a 23% increase in median lifespan, though no increase in maximum lifespan [17973971]. House mouse
    CCL11 chemokine (C-C motif) ligand 11 CCL11 is an age-related systemic factor associated with decreased neurogenesis. Relative levels of CCL11 increase in the plasma during aging an in young mice during Heterochronic Parabiosis [21886162]. House mouse
    CCL2 chemokine (C-C motif) ligand 2 CCL2 levels are evaluated in old unpaired and young heterochronic (with old animals) paired mice [21886162]. House mouse
    Cdkn2a cyclin-dependent kinase inhibitor 2A Cdkn2a encodes different transcripts involved mostly in cell cycle regulation and cellular senescence [12882406], but it can also act as a tumor suppressor. Its expression level increase with age in rodents [15520862]. super-Ink4a/Arf mice carrying a transgenic copy of a large genomic segment containing an intact and complete copy of the Cdkn2a (a.k.a. Ink4a/Arf) gene are significantly protected from cancer and had no indication of accelerated aging. Cells derived from super-Ink4a/Arf mice have increased resistance to in vitro immortalization and oncogenic transformation [15520276]. Loss of Cdkn2a in mice results in tumour susceptibility [11544530]. Mice deficient in Cdkn2a have smaller age-related decline in self-renewal potential as this process is associated with increasing levels of Cdkn2a [16957738]. Increased levels of p16 are associated with aging (Krishnamurthy et al., 2006; Molofsky et al., 2006) and a bona fide marker of cellular senescence (Collado et al., 2007). p16INK4a accumulates in many tissues as a function of advancing age (Krishnamurthy et al., 2004; Nielsen et al., 1999; Zindy et al., 1997) and is an effector of senescence (Campisi, 2003; Park et al., 2004), p16INK4a is a potent inhibitor of proliferative kinase Cdk4 (Lowe and Sherr, 2003) which is essential for pancreatic ?-cell proliferation in adult mammals (Rane et al., 1999; Tsutsui et al., 1999). p16INK4a constrains islet proliferation and regeneration in an age-dependent manner. Expression of the p16INK4a transcript is enriched in purified islets compared with the exocrine pancreas and islet-specific expression of p16INK4a increases markedly with aging (Krishnamurthy et al., 2006). Aging in mammals is associated with reduced regenerative capacity in tissues that contain stem cells (Chien and Karsenty, 2005) which is probably partially caused by senescence of progenitors with age (Campisi, 2005; Lombard et al., 2005). Progenitor proliferation in subventricular zone and neurogenesis in the olfactory bulb as well as multipotent progenitor frequency and self-renewal potential, all decline with ageing the mouse forebrain. The decline in progenitor frequency and function correlate with increased expression of p16INK4a (Molofsky et al., 2006). Aging p16INK4a-deficient mice exhibit a significantly smaller decline in subventricular zone proliferation, olfactory bulb neurogenesis and the frequency and self-renewal potential of multipotent progenitors (Molofsky et al., 2006). p16 expression in skin cells is significantly lower the the group that has a strong family history of longevity. As such a younger biological age associates with lower levels of p16INKfa positive cells [22612594]. p16 expression increases exponentially with age. Expression of p16INK4a with age does not predict cancer development. p16INK4a activation is a characteristic of all emerging cancers [http://denigma.de/url/3n]. House mouse
    Cisd2 CDGSH iron sulfur domain 2 Cisd2 knockouts expire premature ageing and reduced lifespan [19451219]. A persistent level of Cisd2 achieved by transgenic expression extends mean, median and maximum lifespan without any apparent deleterious side effects [22661501]. House mouse
    Mcm2 minichromosome maintenance deficient 2 mitotin (S. cerevisiae) Conditional knockouts with reduced expression develop normally but lifespan is greatly reduced with most animals living 10-12 weeks accompanied by deficiencies in the proliferative cell compartments of several tissues and increased cancer incidence. House mouse
    Dgat1 Diacylglycerol O-acyltransferase 1 Deficiency in Dagat1 promotes leanless and extends mean, median and oldest 10% survival by 23, 26 and 9% without limiting food intake [22291164]. House mouse
    Atr Ataxia telangiectasia and Rad3 related Deletion of Atr in young adults eliminates 80-90% of proliferating cells and results in several age-related phenotypes accompanied by a depletion of stem and progenitor cells and exhaustion of tissue renewal and homeostatic capacity [18371340]. Atr mutant mice (so called Seckle mice) exhibit high levels of replicative stress during embryogenesis, when proliferation is widespread, but this is reduced to marginal amounts in postnatal life. In spite of this decrease, adult Seckel mice display accelerated aging, which is further aggravated in the absence of p53. Seckel mice die in less than half a year, exhibit pancytopenia, cachexia and signs of premature aging, including hair graying, kyphosis, osteoporosis, accumulation of fat in the bone marrow, decreased density of hair follicles and thinner epidermis [19620979]. House mouse
    Brca1 Breast cancer 1 Deletion of Brca1 causes senescence in mutant embryos and cultured cells and tumorigenesis and signs of premature aging in adults [12533509]. Brca1 heterozygous appear to have shortened lifespan with 70% of tumor incidence. Lymphoma, but not ovarian and mammary gland tumors, occurs commonly in these animals. After a whole-body exposure to ionizing radiation, Brca1 heterozygous mice have a 3-5-fold higher incidence to ovarian tumors, but not lymphoma, when compared with Brca1(+/+) mice [17420720]. House mouse
    Cdkn1a Cyclin-dependent kinase inhibitor 1A Deletion of Cdkna1 (alias p21) prolongs the lifespan of telomerase-deficient mice with dysfunctional telomeres and improves the repopulation capacity and self-renewal of hematopoietic stem cells [17143283]. The p21(-/-) strains like the Cdkn1a(tmi/Tyj) exhibits enormous regenerative capacities as it closes ear holes similar to MRL mice [20231440; 21722344]. House mouse
    Foxm1 Forkhead box M1 Deletion of Foxm1 causes age-related deterioration in liver regeneration. Increased hepatocyte expression in 12-month-old (aged) transgenic mice of Foxm1b alone is sufficient to restore hepatocyte proliferation to levels found in 2-month-old (young) regenerating liver [14647066]. House mouse
    • Page 1 of 5
    • 25 of 113 factors
    Factors are an extension of GenAge and GenDR.

    Comment on This Data Unit