Factors

We need to know every factor which determines lifespan.

Lifespan factors often but not always originate from defined genetic elements. They are not just genes, by definition they can be anything for which a Classifications schema can be build for that is related to the regulation of lifespan, such entities may include Single-Nucleotide Polymorphism, transcript variants, proteins and their complexes, compounds (i.e. small molecules like metabolites and drugs), etc. A factor should be based on a defined molecular entity or genomic position and been classified. It shall be highly flexible and scalable Concept.

While individual lifespan factors within each species or precise defined molecular entities will be captured within the Lifespan App, Data Entries of the Data App may summarize for instance the relevance of each factor class (e.g. homologous group; chemical derivate of related structure and properties, etc.) as well as draw overall conclusions. o

prometheus--2.jpg

  • symbol name observation species
    W09C5.8 RNAi against W09C5.8 increases mean and maximum lifespan by 62% and 50%, respectively [12447374]. Lifespan extension by RNAi of W09C5.8 is not suppressed by daf-16. Loss of W09C5.8 activity via RNAi can also result in a shortened lifespan, reduced fertility and defects in mitochondrial respiratory chain function [19074434]. W09C5.8 RNAi animals have lower ATP content and oxygen consumption [12447374]. Nematode
    IPT1 InositolPhosphoTransferase 1 Transposon-mediated mutation of IPT1 increases oxidative stress resistance and chronological lifespan by 40% [16527275]. IPT1 deletion decreases replicative lifespan by 30% in the alpha strain [19030232]. Budding yeast
    Factors are an extension of GenAge and GenDR.

    Comment on This Data Unit