Factors

We need to know every factor which determines lifespan.

Lifespan factors often but not always originate from defined genetic elements. They are not just genes, by definition they can be anything for which a Classifications schema can be build for that is related to the regulation of lifespan, such entities may include Single-Nucleotide Polymorphism, transcript variants, proteins and their complexes, compounds (i.e. small molecules like metabolites and drugs), etc. A factor should be based on a defined molecular entity or genomic position and been classified. It shall be highly flexible and scalable Concept.

While individual lifespan factors within each species or precise defined molecular entities will be captured within the Lifespan App, Data Entries of the Data App may summarize for instance the relevance of each factor class (e.g. homologous group; chemical derivate of related structure and properties, etc.) as well as draw overall conclusions. o

prometheus--2.jpg

  • symbol name observation species
    Cox14 COX14 cytochrome c oxidase assembly Cox14 (D3ZWG6_RAT) is transcriptional upregulated in the cerebral cortex at the age 28 months under different longevity conditions such as under dietary restriction (DR) as well as in feeding switch regimens that result in extended lifespan, like early age switch to DR as well as the reverse switch under the influence of the DR-mimetic α-lipoic acid (i.e. DR switched to ad libitum+ lipoic acid) [Shona et al. 2013]. Norway rat
    Cox5a Cytochrome c oxidase subunit 5A, mitochondrial Cox5a is transcriptional upregulated in the cerebral cortex at the age 28 months under different longevity conditions such as under dietary restriction (DR) as well as in feeding switch regimens that result in extended lifespan, like early age switch to DR as well as the reverse switch under the influence of the DR-mimetic α-lipoic acid (i.e. DR switched to ad libitum+ lipoic acid) [Shona et al. 2013]. Norway rat
    Cox7c cytochrome c oxidase, subunit VIIc Cox7c is transcriptional upregulated in the cerebral cortex at the age 28 months under different longevity conditions such as under dietary restriction (DR) as well as in feeding switch regimens that result in extended lifespan, like early age switch to DR as well as the reverse switch under the influence of the DR-mimetic α-lipoic acid (i.e. DR switched to ad libitum+ lipoic acid) [Shona et al. 2013]. Norway rat
    Cyth2 Cytohesin-2 Cyth2 is transcriptional uprgulated in the cerebral cortex at the age 28 months under different longevity conditions such as under dietary restriction (DR) as well as in feeding switch regimens that result in extended lifespan, like early age switch to DR as well as the reverse switch under the influence of the DR-mimetic α-lipoic acid (i.e. DR switched to ad libitum+ lipoic acid) [Shona et al. 2013]. Norway rat
    Dctn6 dynactin subunit 6 Kndc1 is transcriptional upregulated in the cerebral cortex at the age 28 months under different longevity conditions such as under dietary restriction (DR) as well as in feeding switch regimens that result in extended lifespan, like early age switch to DR as well as the reverse switch under the influence of the DR-mimetic α-lipoic acid (i.e. DR switched to ad libitum+ lipoic acid) [Shona et al. 2013]. Norway rat
    Eml5 Echinoderm microtubule-associated protein-like 5 Eml5 is transcriptional downregulated in the cerebral cortex at the age 28 months under different longevity conditions such as under dietary restriction (DR) as well as in feeding switch regimens that result in extended lifespan, like early age switch to DR as well as the reverse switch under the influence of the DR-mimetic α-lipoic acid (i.e. DR switched to ad libitum+ lipoic acid) [Shona et al. 2013]. Norway rat
    Egln3 Egl nine homolog 3, mitochondrial Egln3 is transcriptional upregulated in the cerebral cortex at the age 28 months under different longevity conditions such as under dietary restriction (DR) as well as in feeding switch regimens that result in extended lifespan, like early age switch to DR as well as the reverse switch under the influence of the DR-mimetic α-lipoic acid (i.e. DR switched to ad libitum+ lipoic acid) [Shona et al. 2013]. Norway rat
    Fam107a family with sequence similarity 107, member A Fam107a is transcriptional downregulated in the cerebral cortex at the age 28 months under different longevity conditions such as under dietary restriction (DR) as well as in feeding switch regimens that result in extended lifespan, like early age switch to DR as well as the reverse switch under the influence of the DR-mimetic α-lipoic acid (i.e. DR switched to ad libitum+ lipoic acid) [Shona et al. 2013]. Norway rat
    Gabra6 Gamma-aminobutyric acid receptor subunit alpha-6 Gabra6 is transcriptional downregulated in the cerebral cortex at the age 28 months under different longevity conditions such as under dietary restriction (DR) as well as in feeding switch regimens that result in extended lifespan, like early age switch to DR as well as the reverse switch under the influence of the DR-mimetic α-lipoic acid (i.e. DR switched to ad libitum+ lipoic acid) [Shona et al. 2013]. Norway rat
    Gadd45gip1 Growth arrest and DNA damage-inducible proteins-interacting protein 1 Gadd45gip1 is transcriptional upregulated in the cerebral cortex at the age 28 months under different longevity conditions such as under dietary restriction (DR) as well as in feeding switch regimens that result in extended lifespan, like early age switch to DR as well as the reverse switch under the influence of the DR-mimetic α-lipoic acid (i.e. DR switched to ad libitum+ lipoic acid) [Shona et al. 2013]. Norway rat
    Gh1 growth hormone 1 Animals carrying a single copy of an anti-sense Gh1 transgene (tg/-) live on average 7-10% longer. However, animals carrying two copies of the transgene (tg/tg) have a slighlty shorter lifespan compared to -/- animals, indicating that an optimal dosage of Gh1 is nessary to achieve lifespan exentension and too little GH has a detrimental effect on longevity. tg/tg and tg/- animals are dwarfs and exhibit reduced levels of serum IGF1 [12057928]. Norway rat
    Gucy1a2 Guanylate cyclase soluble subunit alpha-2 Gucy1a2 is transcriptional downregulated in the cerebral cortex at the age 28 months under different longevity conditions such as under dietary restriction (DR) as well as in feeding switch regimens that result in extended lifespan, like early age switch to DR as well as the reverse switch under the influence of the DR-mimetic α-lipoic acid (i.e. DR switched to ad libitum+ lipoic acid) [Shona et al. 2013]. Norway rat
    Kndc1 kinase non-catalytic C-lobe domain (KIND) containing 1 Kndc1 is transcriptional downregulated in the cerebral cortex at the age 28 months under different longevity conditions such as under dietary restriction (DR) as well as in feeding switch regimens that result in extended lifespan, like early age switch to DR as well as the reverse switch under the influence of the DR-mimetic α-lipoic acid (i.e. DR switched to ad libitum+ lipoic acid) [Shona et al. 2013]. Norway rat
    Lamc1 laminin, gamma 1 Lamc1 is transcriptional upregulated in the cerebral cortex at the age 28 months under different longevity conditions such as under dietary restriction (DR) as well as in feeding switch regimens that result in extended lifespan, like early age switch to DR as well as the reverse switch under the influence of the DR-mimetic α-lipoic acid (i.e. DR switched to ad libitum+ lipoic acid) [Shona et al. 2013]. Norway rat
    Leprel2 leprecan-like 2 Leprel2 is transcriptional downregulated in the cerebral cortex at the age 28 months under different longevity conditions such as under dietary restriction (DR) as well as in feeding switch regimens that result in extended lifespan, like early age switch to DR as well as the reverse switch under the influence of the DR-mimetic α-lipoic acid (i.e. DR switched to *ad libitum*+ lipoic acid) [Shona et al. 2013]. Norway rat
    Mir34a microRNA mir-34a Increases in aging rat liver, which suppresses the expression of such proteins as Sirt1 and Mgst1, resulting in dysfunction of oxidative stress defense and regulation [21216258] Norway rat
    Mir93 microRNA mir-93 Increases in Aging rat Liver, which suppresses the expression of such proteins as Sirt1 and Mgst1, resulting in dysfunction of oxidative stress defense and regulation [21216258] Norway rat
    Mir98 microRNA mir-98 miR-98-3p is the only miRNA significantly differentially expressed (upregulated) under DR and LA (lipoic acid; a DR-mimetic) treatment. Across mouse, rat and human predicted targets of miR-98-3p include the glutamate receptors, calcium transporters, histones and histone acetyltransferase/deacetylases. miR-89-3p is expressed at a low level and is highly conserved in rat, mouse, human and anplis lizard. Mir-98 precursor is located on the X-chromosome. In the rat, mouse and human genome it overlaps an E3 ubiquitin ligase HUWE which is involved in regulation of apoptosis, regulation of neural differentiation and proliferation, DNA damage repair [Shona et al. 2013]. miR-98 expression is significantly decreased in the adventitia and endomembrane ath different degrees in Goto-Kakizaki rat, a model of type 2 diabetes. miR-98 targets TRB2 which is increased in expression in this model of type 2 diabetes. TRB2 phosphorylates Akt [22012613]. The mouse ortholog of Mir98 may by associated with the germline [16766679]. Norway rat
    Mul1 mitochondrial ubiquitin ligase activator of NFKB 1 Mul1 is transcriptional downregulated in the cerebral cortex at the age 28 months under different longevity conditions such as under dietary restriction (DR) as well as in feeding switch regimens that result in extended lifespan, like early age switch to DR as well as the reverse switch under the influence of the DR-mimetic α-lipoic acid (i.e. DR switched to ad libitum+ lipoic acid) [Shona et al. 2013]. Norway rat
    Mapk6 Mitogen-activated protein kinase 6 Mapk6 is transcriptional downregulated in the cerebral cortex at the age 28 months under different longevity conditions such as under dietary restriction (DR) as well as in feeding switch regimens that result in extended lifespan, like early age switch to DR as well as the reverse switch under the influence of the DR-mimetic α-lipoic acid (i.e. DR switched to ad libitum+ lipoic acid) [Shona et al. 2013]. Norway rat
    LOC100361934 NADH dehydrogenase (ubiquinone) 1 beta subcomplex 4 LOC100361934 is transcriptional upregulated in the cerebral cortex at the age 28 months under different longevity conditions such as under dietary restriction (DR) as well as in feeding switch regimens that result in extended lifespan, like early age switch to DR as well as the reverse switch under the influence of the DR-mimetic α-lipoic acid (i.e. DR switched to ad libitum+ lipoic acid) [Shona et al. 2013]. Norway rat
    Npy neuropeptide Y Overexpression of Npy under the control of its own promoter results in increased mean and maximum lifespan. However the observed lifespan extension is relatively small (p = 0.0059 by Wilcoxin test and p = 0.05 by t-test; n = 20) [12668588]. The blood pressure of Npy transgenic rats was significantly lower as compared with nontransgenic siblings. Food intake and weight were not significantly different compared to controls [12668588]. Norway rat
    Pigq phosphatidylinositol N-acetylglucosaminyltransferase subunit Q Pigq is transcriptional downregulated in the cerebral cortex at the age 28 months under different longevity conditions such as under dietary restriction (DR) as well as in feeding switch regimens that result in extended lifespan, like early age switch to DR as well as the reverse switch under the influence of the DR-mimetic α-lipoic acid (i.e. DR switched to ad libitum+ lipoic acid) [Shona et al. 2013]. Norway rat
    Galnt1 Polypeptide N-acetylgalactosaminyltransferase 1Polypeptide N-acetylgalactosaminyltransferase 1 soluble form Galnt1 is transcriptional downregulated in the cerebral cortex at the age 28 months under different longevity conditions such as under dietary restriction (DR) as well as in feeding switch regimens that result in extended lifespan, like early age switch to DR as well as the reverse switch under the influence of the DR-mimetic α-lipoic acid (i.e. DR switched to ad libitum+ lipoic acid) [Shona et al. 2013]. Norway rat
    Kcnk10 Potassium channel subfamily K member 10 Kcnk10 is transcriptional downregulated in the cerebral cortex at the age 28 months under different longevity conditions such as under dietary restriction (DR) as well as in feeding switch regimens that result in extended lifespan, like early age switch to DR as well as the reverse switch under the influence of the DR-mimetic α-lipoic acid (i.e. DR switched to ad libitum+ lipoic acid) [Shona et al. 2013]. Norway rat
    Factors are an extension of GenAge and GenDR.

    Comment on This Data Unit