Factors

We need to know every factor which determines lifespan.

Lifespan factors often but not always originate from defined genetic elements. They are not just genes, by definition they can be anything for which a Classifications schema can be build for that is related to the regulation of lifespan, such entities may include Single-Nucleotide Polymorphism, transcript variants, proteins and their complexes, compounds (i.e. small molecules like metabolites and drugs), etc. A factor should be based on a defined molecular entity or genomic position and been classified. It shall be highly flexible and scalable Concept.

While individual lifespan factors within each species or precise defined molecular entities will be captured within the Lifespan App, Data Entries of the Data App may summarize for instance the relevance of each factor class (e.g. homologous group; chemical derivate of related structure and properties, etc.) as well as draw overall conclusions. o

prometheus--2.jpg

  • Types: + -
    Gene (2)  
  • symbol name observation species
    Nudt1 nudix (nucleoside diphosphate linked moiety X)-type motif 1 hMTH1-Tg mice express high levels of the hMTH1 hydrolase that degrades 8-oxoGTP and 8-oxoGTP and excludess 8-oxoguanine from both DNA and RNA. hMTH1-overexpresing mice have significantly lower steady-state levels of 8-oxoguanine in both nuclear and mitochondrial DNA of several organs, including the brain. hMTH1 overexpression prevents the age-dependent accumulation of DNA 8-oxoguanine that occurs in the wild-type mice. These lower levels of oxidized guanines are associated with increased longevity and hMTH1-Tg animals live significantly longer than their wild-type littermates [23648059]. House mouse
    Fgf21 Fibroblast growth factor-21 Overproduction of Fgf-21 increases mean lifespan of males by 30% and that of females by 39% [23066506]. Mice overproducing Fgf21 are lean throughout their lives and remain lean even while eating slightly more than wild-type mice. Fgf21 overproducers tend to be smaller than wild-type mice and female mice were infertile. Although Fgf21 overproducers have significantly lower bone density than wild-type, Fgf21-abundant mice exhibit no ill effects from the reduced bone density and remain active into old age without any broken bones. Fgf21 seems to provide its health benefits by increasing insulin sensitivity and blocking the growth hormone/insulin-like growth factor-1 signaling. Fgf21 acts as a hormone, is secreted by the liver during fasting and helps the body to adapt to starvation. House mouse
    Pten phosphatase and tensin homolog Increasing gene dosage via homogeneous and moderate overexpression, while retaining its normal pattern of tissue expression of Pten increases mean, median and maximum lifespan in both females and males. Mean lifespan is extended by 18% (males), 11% (females) and 14% (both). Median lifespan in males, females and both increases by 12%, 16% and 12%, respectively [22405073]. Transgenic Pten mice carrying the additional genomic copies of Pten are protected from cancer and present a significant extension of lifespan that is independent of their lower cancer incidence. Pten(g) mice have an increased energy expenditure and protection from metabolic pathologies [22405073]. PTEN promotes oxidative phosphorylation and decreases glycolysis. PTEN aslo upregulates UCP1 expression in brown adipocytes, which enhances their nutrient burning capacity and decreases adiposity and associated pathologies [23245767] House mouse
    Sirt6 sirtuin 6 (silent mating type information regulation 2, homolog) 6 (S. cerevisiae) Sirt6 knockout mice develop signs of premature ageing including a short lifespan [16439206]. Overexpression of Sirt6 in male mice lengthens the median lifespan by 9.9-14.5% and maximum lifespan by 13.1-15.8% [22367546]. Mice without Sirt6 have a higher risk of gastrointestinal cancers. SIRT6 dampens cancer growth by repressing aerobic glycolysis (i.e. conversion of glucose to lactate; a major feature of cancer cells). Loss of Sirt6 increases the number, size and aggressiveness of tumors. Sirt6 loss leads to tumor formation even without activation of oncogenes. Transformed SIRT6-deficient cells exhibit increased glycolysis and tumor growth. Sirt6 inhibits the transcriptional activity of the oncogene Myc via corepression [23217706]. Sirt6 also protects against diet-induced obesity [http://www.biocompare.com/Life-Science-News/127206-Anti-Aging-Gene-Identified-As-Tumor-Suppressor-In-Mice-Research-Finds/]. House mouse
    Nfkbia nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha Overexpression of an endothelial dominant-negatvie I?B? gene prolonged the lifespan [22302838]. House mouse
    Cisd2 CDGSH iron sulfur domain 2 Cisd2 knockouts expire premature ageing and reduced lifespan [19451219]. A persistent level of Cisd2 achieved by transgenic expression extends mean, median and maximum lifespan without any apparent deleterious side effects [22661501]. House mouse
    Ucp2 uncoupling protein 2 (mitochondrial, proton carrier) Overexpression in hypocretin neurons results in mice with elevated hypothalamic temperature and reduction of core body temperature and a 12% increase in median lifespan in males and 20% increase in females. House mouse
    Tert Telomerase reverse transcriptase Overexpression of telomerase results in a high cancer incidence but also a modest mean (10%) and maximum lifespan extension accompanied by a lower incidence of some age-related degenerative diseases, in particular those related to kidney function and germline integrity [15688016]. Mice genetically modified to express telomerase lived 40% longer and do not develop cancer. Overexpression of Tert in mice engineered to be cancer-resistant by means of ehanced expression of p53, p16 and p19ARF (Sp53/Sp16/SARF/TgTERT) decreased telomere shortening with age, delayed aging and increases mean and median longevity by 40% [19013273]. Re-activation of telomerase in a model of premature aging caused by accelerated telomere shortening (duo to telomerase deficiency) was enough to revert some age-associated phenotypes [21113150]. Mice treated with an adeno-assoicated virus vector expressing TERT at the age of one lived 24% longer on average and those treated at the age of two, by 13%. Maximum lifespan of the mice treated at 1 and 2 years was also extended by and 13% and 20%, respectively. AAV9-mTERT treated mice also had improved health, delayed onset of age-related diseases (like osteoporosis and insulin resistance) as well as improved readings in ageing indicators like neuromuscular coordination [22585399]. The gene therapy consists of a single injected via tail vein and achieved a transduction efficiency of 20-50%. Already 1 month after treatment, the treated mice at both age groups had longer telomeres and a decrease in the short telomeres in multiple tissues, while the controls exhibit an increase in short telomerase. In contrast to their control littermates at 3 and 8 months post-treatment the blood of most of the AAV9-treated mice at 1 year had no decrease or exhibit even a net increase in average telomere length and had also no increase or even a marked decrease in percentage of short telomeres with time. Thus, the therapy achieved in perhipheral blood leukocytes a prevention of telomere shortening. Treated mice had lower leves of fasting insulin, improved glucose tolerance and better homeostatic model assessment. Two years old treated mice had higher IGF1 levels. Treated mice at both ages had improved memory scores. AAV9-mTERT treatment increased cyclinD1 positive cells in various tissues. Upon AAV9-mTERT treatment levels of p16 decreased in most organs (with exception of heart). The metabolic and mitochondrial decline in 2 years old mice treated was not as apparent as in controls [22585399]. House mouse
    Plau Plasminogen activator, urokinase Transgenic mice (called alphaMUPA) overexpression Plau in many brain sites (including hypothalamus) consume (20%) less food, have a reduced body weight (by 20%) and length (by 6%), reduced temperature, and a prolonged lifespan (by 20%) [9060969]. alphaMUPA mice have reduced levels of blood sugar and smaller size and birth frequency compared to parental control [9060969] as well as a reduced body weight [10638529]. House mouse
    Pck1 phosphoenolpyruvate carboxykinase 1, cytosolic Overexpression of Pck1 in skeletal muscle results in an increased number of mitochondria, markedly increase in activity, and extended lifespan by 30%. Transgenic mice ate 60% more than controls but had half the body weight and 10% of the body fat [17716967; Hakimi, Berger and Hanson, unpublished]. Pck1 overxpression leads to increased storage and utilization of fatty acids in muscle for energy purposes and mutants store up to 5-times more triglyceride in their skeletal muscle, and exhibit increased levels of physiological activity [18394430]. House mouse
    Pawr PRKC, apoptosis, WT1, regulator Mice overexpressing the pro-apoptotic protein domain were resistant to tumours. Transgenic animals showed normal fertility, viability, and ageing, though they were slightly longer-lived possibly because of the cancer-resistance. House mouse
    Kl Klotho Klotho disruption results in infertility and signs of premature ageing such as a short lifespan, arteriosclerosis, skin atrophy, osteoporosis, and emphysema. Klotho overexpression leads to lifespan extension [9363890]. Klotho is highly expressed in brain and kidney [10631108]. The circulating form of Klotho binds to a cell-surface receptor and represses intracellular signals of insulin and IGF1. Perturbing insulin and IGF1 alleviates the aging-like phenotypes in Klotho-deficient mice [16123266]. kl/kl mice initially develop normally but exhibit growth retardation starting at 3-4 weeks of age. Their average lifespan is 61 days (none more than 100 days). These mice gradually become inactive, with reduced stride length, atrophic genital organs, thymus atrophy, arteriosclerosis (medial calcification and intimal thickening), ectopic calcification in arterial walls, osteroposis, skin atrophy, impaired maturation of gonadal cells, emphysema, reduced growth hormone-producing cells in the pituitary gland, slight hypercalcemia, and hyperphosphatemia [9363890]. kl/kl mice have decreased insulin production and increased insulin sensitivity [11016890]. House mouse
    Irs2 insulin receptor substrate 2 Irs2 brain-specific knockout mice were overweight, hyperinsulinemic, glucose intolerant, yet more active and lived up to 18% longer. House mouse
    Igf1 Insulin-like growth factor 1 (somatomedin C) Cardiac specific overexpression of Igf1 results in a 23% increase in median lifespan, though no increase in maximum lifespan [17973971]. House mouse
    Ghr Growth hormone receptor Ghr knockouts (the so called Laron mice) are dwarfs with significantly extended lifespan by 40-50% [12933651]. Ghr-/- mice are significantly longer lived as Ghr+/+ or Ghr+/- mice (by 40-50%) in both females and males [10875265; 19370397]. 30% DR fails to affect overall survival, average or median long-lifespan of Growth hormone receptor knockout (GHRKO) mice and increased maximal lifespan only in females. Insulin sensitivity in GHRKO mutants is greater than in wild-type and is not further increased by DR [16682650]. Intermittent fasting also fails to extend the long lifespan of GHRKO mice [19747233]. Lifespan of mice with a deletion in the Ghr gene live almost 5 years [21123740]. In C57BL/6J this mutation increases life expectancy by 16 to 26% depending on gender [12933651] and in mice of mixed genetic background the increases amounted to 36-55% [9371826]. Serum levels of GH are elevated in mutant mice [9371826] and mutants are smaller than wild-type. IGF-1 and IGFBP-3 levels are also reduced in Ghr mutant mice [10875265]. The age-associated decline in memory retention is delayed in Ghr mutants [11336996]. Overexpression of a growth hormone antagonist (a mutated growth hormone that competes with the endogenous one) has no effect on lifespan [12933651]. House mouse
    Cebpb CCAAT/enhancer binding protein (C/EBP), beta Replacing the Cebpa gene by Cebpb increases mean lifespan by about 20% [15289464]. C/ebpalpha(beta/beta) animals consume more food but weight less than controls [10982846], and have a slightly elevated body temperature (0.3-0.5 degree Celsius) [15289464]. House mouse
    Bub1b budding uninhibited by benzimidazoles 1 homolog, beta (S. cerevisiae) Bub1b hypomorphic mutation decreases median lifespan by 60% (from 15 to 6 months) and such mutant mice that procude low levels of the protein are prone to aneuplody and develop many phenotypes suggestive of accelerated aging, including short lifespan, growth retardation, sarcopenia, lordokyphosis, progressive bilateral cataracts, substantial loss of sub dermal adipose tissue, spinal kyphosis, muscle atrophy, reduced dermal thickness and decreased wound healing [15208629; 17272762; 16781018; 18516091]. Moreover, there is a pronounced increase in senescent associated Beta-galactosidase expression in late generation Bub1b mutant mice, indicative of increased rate of cellular senescence. Homozyogous knockout of Bub1b results in lethality, while heterozygous animals exhibit no aging phenotypes [15208629]. Sustained high-level expression of BubR1 preserves genomic integrity and reduces tumorgenesis (even in the presence of genetic alterations that strongly promote aneuplodization and cancer, such as oncogenic Ras) and extends the lifespan and delays age-related deterioriation and aneuploidy in several tissues [23242215]. BubR1 overabundance exerts its protective effect by correcting mitotic checkpoints defects [23242215]. BubR1 expression level declines with age in various tissues [15208629; 17272762; 16781018]. The median and maximum lifespan of mice with a nonsense mutation 2211insGTTA in BubR1 is significantly reduced. BubR1(+/GTTA) mice develop several aging-related phenotypes at an accelerated rate, including catarct formation, lordokyphosis, skeletal muscle wasting, impaired exercise ability, and fat loss. Further BubR1(+/GTTA) mice develop mild anaplodies and exhibit enhanced growth of carcinogen-induced tumors [Wijshake et al. 2012]. House mouse
    • 17 factors
    Factors are an extension of GenAge and GenDR.

    Comment on This Data Unit